Introduction to Parallel Computing (Java Concurrency)

2.5-hour intensive lecture

Shuhao Zhang

Huazhong University of Science and Technology (HUST)

shuhao_zhang]at]hust.edu.cn
shuhaozhangtony.github.io

January 2026

1/108

https://shuhaozhangtony.github.io/

| =
Logistics

e Format: lecture-only (no labs, no tutorials)

@ Assumed background: basic Java, basic data structures

@ Goal: build a practical mental model for writing correct concurrent Java programs
e We focus on Java 17+ APlIs; no deep Java Memory Model (JMM) theory

2/108

-
Agenda

@ Motivation & mental model (parallel vs concurrent)

@ Threads: lifecycle, creating threads, joining

© Correctness: races, synchronized, visibility

@ Coordination: wait/notify and blocking

© Executors & thread pools: safe structure for concurrency

Q Patterns & pitfalls: producer-consumer, deadlock, starvation

@ More tools: locks & executor patterns

© Synchronizers & concurrent collections

© Debugging & operational tips

@ Performance intuition & wrap-up

3/108

Motivation & Mental Model

Motivation & Mental Model

4/108

Why Parallel / Concurrent Computing?

@ More cores are common,; single-core speed is limited (power/heat)
o We want either:

o Lower latency: respond faster
e Higher throughput: do more work per second

@ Real systems: web services, data processing, simulations, Al pipelines

5/108

Three Related Words

Concurrency

Multiple tasks make progress overlapping in time (may run on 1 core).

Parallelism

Multiple tasks run at the same time (requires multiple cores).

Distributed

Tasks run on different machines (network + partial failures).

6/108

A Simple Hardware Picture

@ CPU cores execute instructions
@ Each core has private caches; all cores share main memory

@ Key implication: shared memory is not instantly consistent

Core 2 + L1/L2

Core 1 + L1/L2

Core 3 + L1/L2

[Main Memory (RAM) }

7/108

Motivation & Mental Model

Memory Hierarchy (Why Performance is Non-Linear)

Processor
Control S . Tertiary
|1 econdary Storage
— 20d/3rd Main S(tD"ir:kg)e (Tape)
? ~ 9, Level Memory
Datapath| & 1IJ] 2 & Cache [J| ORAM)
g s g (SRAM)
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks Ms Gs Ts

8,108

What Makes Concurrency Hard?

Non-determinism: many valid interleavings
Shared mutable state: races + visibility problems

Liveness hazards: deadlock, starvation

Debugging is difficult because bugs may disappear when you add logs

9/108

What We Will Cover (and Skip)

Cover Skip / mention only
@ Threads and interruption @ Deep JMM formalism
@ synchronized, volatile, atomics @ Fork/Join details
@ Executors and thread pools @ Lock-free algorithm design
@ Common patterns + pitfalls @ Distributed systems topics

10/108

A Rule of Thumb

Prefer simplicity over cleverness
If you can avoid sharing state, do it. J

@ Immutability and confinement are the easiest correctness tools

@ When you must share state, synchronize deliberately

11/108

Java Threading Fundamentals

Java Threading Fundamentals

12/108

ore
Creating Threads: Two Common Ways

o Extend Thread (simple, but less flexible)
@ Implement Runnable / Callable<T> (preferred)

Key idea
A thread runs code; a task is the code to run. J

13/108

Java Threading Fundamentals -
Core

Example: Minimal Thread Creation

public class HelloThreads {
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(() ->
System.out.println("Hello from " + Thread.currentThread() .getName()));
t.startO;
t.join();
System.out.println("Done") ;
}
}

14 /108

Thread Lifecycle (Practical View)

NEW — created, not started

RUNNABLE — eligible to run (or running)

BLOCKED / WAITING — waiting for a lock/condition
TERMINATED — finished

Debug hint

If your program "hangs”, identify which threads are waiting, and on what.

15 /108

Thread Lifecycle: State Diagram

start) run_ends

RUNNABLE

TERMINATED

wait/sleep/join enter synchronized
notify /timeout lock acquired

y' <
WAITING BLOCKED
TIMED WAITING

16 /108

Java Threading Fundamentals

Race Condition: The Classic Counter

public class RaceCondition {
private static int counter = O;

public static void main(String[] args) throws InterruptedException {
Runnable task = () -> {
for (int i = 0; i < 100_000; i++) counter++; // not atomic

18

Thread t1 = new Thread(task);
Thread t2 = new Thread(task);
til.start();
t2.start();
tl.join();
£2.join();

System.out.println("Expected 200000, actual " + counter);

17 /108

Why counter++ Loses Updates

Thread 1
1) read ¢ (=0)
2) add 1 (local=1)
3) write ¢ (=1)

One possible interleaving:
Tl:read 0 T2:read 0 TI1: writel T2: writel
Result: two increments, but final ¢ =1 (lost update)

Thread 2
1) read c (=0)
2) add 1 (local=1)
3) write ¢ (=1)

18 /108

Java Threading Fundamentals

Two Categories of Concurrency Bugs

Safety (Wrong result)

Race conditions, visibility issues, broken invariants. J
Liveness (No progress)

Deadlock, starvation, livelock, thread leaks. J

19/108

Java Threading Fundamentals

Cancellation and Interruption

@ Java uses cooperative cancellation
© Thread.interrupt() sets an interrupt flag

@ Blocking calls may throw InterruptedException

Rule
If you catch InterruptedException, either propagate it or restore the flag. J

20/108

Java Threading Fundamentals

Interruption Pattern

try {
while (!Thread.currentThread().isInterrupted()) {
// do work

Thread.sleep(50);
}
} catch (InterruptedException e) {
Thread.currentThread() .interrupt(); // restore

3

21,108

Synchronization Essentials

Synchronization Essentials

22/108

What Does Synchronization Solve?

@ Mutual exclusion: prevent conflicting updates
o Visibility: make writes by one thread visible to others

@ Ordering: constrain reordering across threads

23/108

A Typical Synchronization Bug (Diagram)

@ Symptom: occasionally wrong results or hangs

e Cause: missing mutual exclusion / missing condition coordination

balance = get_balance(account);
balance = balance — amount;

Execution - - ool :
sequence alance = get_balance(account);

seen by CPU balance = balance — amount; Context switch
put_balance(account, balance);

put_balance(account, balance);

24 /108

Synchronization Essentials
Core

The Monitor ldea: synchronized

e Every Java object can act as a lock (monitor)
@ synchronized enforces:

e only one thread executes a critical section at a time
e a visibility boundary when entering/exiting the monitor

25108

Synchronization Essentials

Fixing the Counter with synchronized

public class SynchronizedCounter {

}

private int counter = 0;

public synchronized void inc() {
counter++;

}

public synchronized int get() {
return counter;

}

26 /108

volatile: Visibility Without Mutual Exclusion

@ volatile makes reads/writes visible across threads
@ It does not make compound actions atomic

@ Typical use: stop flags, configuration snapshots

Anti-pattern
volatile int x; x++; is still not atomic. J

27/108

Visibility and Ordering: A Minimal Picture

Thre?d 1 happens-before vi voig}:rffél 2
1) write data 1) if (volatileFlag)
2) volatileFlag = true 2) read data

Takeaway: volatile gives visibility 4+ ordering for the flag
but does not make compound updates (like counter++) atomic.

28108

Synchronization Essentials
Core

Atomic Variables

@ AtomicInteger, AtomicLong, AtomicReference<T>
@ Provide atomic read-modify-write operations (CAS based)

@ Often good for counters, IDs, statistics

Performance note
For highly contended counters, consider LongAdder. J

20/108

Waiting for a Condition: wait/notify

@ Use when a thread must wait until a condition becomes true

o Always call wait () inside a loop checking the condition

synchronized (lock) {
while (!condition) {
lock.wait();
}
// proceed
}

30/108

Synchronization Essentials

wait() and notify () (Conceptual Flow)

A

Thre
(prod

Thread A
(consumer)

nter monito Monitor }

synchronized (lock)
check c‘:ndition

€r monitor

Condition
{§e8-, queue not empty)
| false

ucerhake condition

wait (): releases lock)
Rule: always wait () in a while loop

(spurious wakeups + condition may change)

31/108

From wait/notify to Higher-Level Tools

@ Higher-level concurrency utilities reduce mistakes:

e BlockingQueue (producer-consumer)
o CountDownLatch, Semaphore
e ReentrantLock + Condition

@ Principle: prefer library abstractions over custom locking

32/108

ExecutorService and Thread Pools

ExecutorService and Thread Pools

33/108

Why Not Create Threads Everywhere?

@ Threads are not free: stack memory, context switching, scheduling overhead
@ Unbounded thread creation can crash a service

o We want a policy: queueing, limits, naming, shutdown

34108

ExecutorService and Thread Pools

Executor Framework: Core ldea

@ Separate task submission from task execution

@ Use a thread pool to reuse worker threads
@ Main APls:

o Executor (execute)
o ExecutorService (submit, shutdown)

35,108

ExecutorService and Thread Pools

Executor Framework (Diagram)

Executors.newScheduledThreadPool
tasks thread pool

O

execution
task queue

policy
506000]
o

> > > >
> > > >
> > P>
> > > b

N

Define in Execute() of

define as Runnable of each
the executor class

Executor object

36/108

ExecutorService and Thread Pools
Core

Task Pool Intuition (Diagram)

@ A fixed number of workers repeatedly pull tasks from a queue

@ This gives you a global place to enforce: limits, naming, shutdown, monitoring

\9, 0*0
Thread 1 ,;% %% o4 Thread 3

06; f = \{\
% \® W2

y @s’o’@
% o2 O
5 ONG)
Thread 2 *‘I@A SA~\% Thread 4

37/108

ExecutorService and Thread Pools

Thread Pool in One Picture

Thread 1
—
Thread 2
Worker

- it/exe ute
sCLII;)en:?t:htfi fExe cutorServi ce]—>

Key idea: decouple submission from execution
and reuse a bounded set of worker threads

38,108

Example: Parallel Work with invokeAll

import java.util.*;
import java.util.concurrent.x*;

public class ExecutorInvokeAll {
public static void main(String[] args) throws Exception {
ExecutorService pool = Executors.newFixedThreadPool(4);
try {
List<Callable<Integer>> tasks = new ArrayList<>();
for (int i = 0; i < 8; i++) {
int id = i;
tasks.add(() -> id * id);
}
for (Future<Integer> f : pool.invokeAll(tasks)) {
System.out.println(f.get());
}
} finally {
pool.shutdown() ;
}
}

by 39,108

[Core]
ore
Shutdown Correctly

@ shutdown() stops accepting new tasks

@ shutdownNow() also attempts to interrupt workers

@ Always make a plan for:

e timeouts
o cancellation
e resource cleanup

40/ 108

Thread Pool Tuning (Rules of Thumb)

@ CPU-bound tasks: pool size =~ number of cores
@ |/O-bound tasks: larger pools may help, but measure

@ Prefer bounded queues in services (backpressure)

Warning
A large pool can increase tail latency (p95/p99) due to contention. J

41/108

A Quick Note: CompletableFuture

@ Useful for asynchronous pipelines and composition
@ Avoid blocking inside callbacks

@ Use custom executors for control

CompletableFuture.supplyAsync(this: :fetch)
.thenApply(this: :parse)
.thenAccept (this: :store);

42/108

Patterns & Pitfalls

Patterns & Pitfalls

43108

Thread-Safety by Design: The Easy Wins

o Confinement: keep mutable state inside one thread
o Immutability: share read-only objects

@ Minimize sharing: reduce shared data surface area

44 /108

Concurrent Collections (When Sharing is Needed)

@ ConcurrentHashMap: scalable map
@ CopyOnWriteArrayList: read-mostly lists

@ BlockingQueue: safe handoff between threads

Rule
Do not wrap a non-thread-safe collection and assume it is safe. J

45108

Patterns & Pitfalls

Producer—Consumer: Safe Handoff + Backpressure

@ Producers put work items into a bounded queue
@ Consumers take items and process them

o If producers are faster, the queue fills up = producers block (backpressure)

Producers put (BlockingQueue| take [Consumers
(tasks/events) (bounded) (workers)

If the queue is full, put blocks
= backpressure

46 /108

Patterns & Pitfalls

Producer—Consumer with BlockingQueue

import java.util.concurrent.*;

public class ProducerConsumerBlockingQueue {
public static void main(String[] args) throws Exception {
BlockingQueue<Integer> q = new ArrayBlockingQueue<>(2);

Thread p = new Thread(() -> {

try { q.put(1); q.put(2); q.put(-1); } // -1 = poison pill

catch (InterruptedException e) { Thread.currentThread().interrupt(); }
b

Thread ¢ = new Thread(() -> {
try {
for (53) {
int x = q.take();
if (x == -1) break;
System.out.println('c " + x);

} catch (InterruptedException e) { Thread.currentThread().interrupt(); }
b

p.start(); c.start(); p.join(); c.join();
}

47/108

Patterns & Pitfalls

Deadlock: How It Happens

@ Two (or more) threads wait forever for each other

@ Common cause: inconsistent lock ordering

Thread 1 . ~_] Thread 2
waitsyviagts for

holds
A

X

-,
.
.,

Lock A

Cycle = no progress (deadlock)

Prevention

-

-

~

~

~
~

RN

holds
L4

Lock B

Define a global lock order and always acquire locks in that order.

4877108

Common Pitfalls Checklist

Holding a lock while doing 1/O or calling unknown code
Forgetting timeouts in blocking operations
Using Thread.sleep() for coordination

Ignoring interruption and cancellation

Measuring only average latency (ignore tail)

49 /108

Locks & Executor Patterns

Locks & Executor Patterns

50,108

How to Debug a "Hanging" Program (Checklist)

o Identify which threads are RUNNABLE vs BLOCKED vs WAITING

@ Look for locks: synchronized monitors and ReentrantLock
@ Symptoms to recognize:

o deadlock: circular waiting on locks
o starvation: one thread never gets CPU/lock
o thread leak: threads keep growing over time

51,108

synchronized vs ReentrantLock (When to Use Which)

@ synchronized: simplest; auto-unlock on exceptions

@ ReentrantLock: try-lock, timed lock, multiple Condition objects

Lock lock = new ReentrantLock();
Condition notEmpty = lock.newCondition();
lock.lock();
try {
while (q.isEmpty()) notEmpty.await();
00 ooc
} finally {
lock.unlock();
}

52,108

Thread Pool Tuning: What You Actually Control

exdcute/subfiit take
Tasks submitted Worker threads]

Rule of thumb: bounded queue + clear rejdkhiobsp@inyeadPoolExecutor):
(protects latency and qoesRuy)Size, maximumPoolSize, keepAliveTime
workQueue, RejectedExecutionHandler

53,108

Locks & Executor Patterns

ExecutorService: Patterns Worth Remembering

o Batch tasks: invokeAll for "same kind” tasks
o First result wins: invokeAny (with timeouts)

@ Completion order: CompletionService for streaming results

var cs = new ExecutorCompletionService<Result>(pool);
for (var t : tasks) cs.submit(t);
for (int i = 0; i < tasks.size(); i++) {
Result r = cs.take().get(); // as they finish
X

54108

CompletableFuture: Two Practical Rules

@ Pass a custom executor if you care about isolation

e Handle exceptions explicitly (exceptionally / handle)

ExecutorService pool = Executors.newFixedThreadPool(4);
try {
CompletableFuture.supplyAsync(this::fetch, pool)
.thenApply(this: :parse)
.exceptionally(ex -> fallback());
} finally {
pool.shutdown() ;
}

55,108

ConcurrentHashMap: Safe Patterns

@ Prefer atomic methods: computeIfAbsent, merge
@ Avoid "check-then-act” with external locks

@ Values still need to be thread-safe (immutability helps)

56 /108

Performance Notes (Only If Asked)

@ Contended counters: LongAdder beats AtomicLong under high contention
@ More threads can increase tail latency (p95/p99)

@ Beware false sharing (adjacent hot fields on one cache line)

57,108

Synchronizers

Synchronizers

58 /108

i
Optional

Synchronizers: A Small Taxonomy

Mutual exclusion: monitor lock, ReentrantlLock
One-shot coordination: CountDownLatch
Reusable coordination: CyclicBarrier, Phaser
Permits / throttling: Semaphore

Handoff/ queues: BlockingQueue, SynchronousQueue

50 /108

CountDownlLatch: One-shot Gate

@ Use it to wait for N events to happen

o After it reaches zero, it stays open forever

var done = new CountDownLatch(tasks.size());
for (var t : tasks) {

pool.submit(() -> { try { t.run(); } finally { done.countDown(); } });
}

done.await();

60 /108

i
Optional

CyclicBarrier: Reusable Rendezvous

@ Use it when K threads must reach the same point

@ Optional "barrier action” runs when the last party arrives

var barrier = new CyclicBarrier(k, this::merge);
for (int i = 0; i < k; i++) {

pool.submit(() -> { stepl(); barrier.await(); step2(); return null; });
}

61,108

i
Optional

Semaphore: Limit Concurrency

@ Use it to protect a scarce resource (DB connections, rate-limited API)

@ Acquire before, release after

var sem = new Semaphore(10);

void handle() throws InterruptedException {
sem.acquire();
try { callRemote(); }
finally { sem.release(); }

}

62/108

ReadWriteLock: Many Readers, Few Writers

@ Multiple readers can proceed concurrently
o Writers are exclusive
@ Works best when reads dominate and the protected data is large

@ Simpler alternative: immutable snapshots + volatile reference

63/108

Condition Variables: Multiple Wait Sets

@ A monitor has a single wait set; Condition allows multiple

@ Always wait in a loop (spurious wakeups)

lock.lock();
try {
while (q.isEmpty()) notEmpty.await();
var x = q.remove();
notFull.signal();
} finally {
lock.unlock();
}

64108

i
Optional

BlockingQueue as a Synchronizer

Producer-consumer is usually easiest with BlockingQueue
Blocking operations: put and take

Bounded queues provide backpressure

Prefer it over manual wait/notify in application code

65,108

i
Optional

SynchronousQueue: Direct Handoff

o Capacity is 0: a put waits for a take
@ Useful for handoff designs and certain thread pool queues
e Bad fit for batching (no buffering)

66 /108

Phaser / Exchanger (Mention Only)

@ Phaser: dynamic parties + phased computation (advanced)
@ Exchanger: two threads swap objects at a rendezvous

o If you do not already need them, prefer simpler tools

67,108

Which Synchronizer Should | Use?

Need to protect shared state? — lock / synchronized
Need to wait for N tasks? — CountDownLatch
Need K threads to meet repeatedly? — CyclicBarrier

Need to bound concurrency? — Semaphore

Need safe handoff / buffering? — BlockingQueue

68108

Concurrent Collections

Concurrent Collections

69 /108

Why Concurrent Collections Exist

@ Correct synchronization is hard to get right everywhere
@ Built-in concurrent data structures:

e reduce locking mistakes
o offer better scalability than a single global lock

@ Still requires a mental model: atomic methods, iteration semantics

70,108

Concurrent Collections -
Optional

Synchronized Wrapper vs Concurrent Collection

@ Collections.synchronizedList(list): one lock around every method
@ Concurrent collections often use finer-grained coordination
@ Wrapper iteration still needs external synchronization

@ Rule: prefer concurrent collections in multi-threaded code

71/108

[Optional |
ConcurrentHashMap: What You Can Assume

@ Safe for concurrent access without external locks
o lteration is weakly consistent (no ConcurrentModificationException)
@ Avoid check-then-act on multiple operations

@ Values should be immutable or thread-safe

72/108

Concurrent Collections

ConcurrentHashMap: Atomic Update Patterns

@ Prefer atomic map operations over manual locking

map.computeIfAbsent (k, key -> expensiveInit(key));
map.merge(k, 1L, Long::sum);
map.compute(k, (key, v) -> v == null 7 1 : v + 1);

73/108

CopyOnWriteArrayList: Read-mostly Workloads

@ Writes copy the whole array (expensive)
@ Reads are fast and iteration is snapshot-based
@ Great when: many readers, few writers, small-ish list

@ Bad when: frequent writes or very large lists

74 /108

Concurrent Collections

ConcurrentLinkedQueue vs BlockingQueue

@ ConcurrentLinkedQueue: non-blocking, unbounded, no backpressure
@ BlockingQueue: can block and can be bounded

o If you need producer-consumer, start with BlockingQueue

75,108

BlockingQueue Families (Quick Guide)

@ ArrayBlockingQueue: bounded, array-based, predictable
@ LinkedBlockingQueue: optionally bounded, linked nodes
@ PriorityBlockingQueue: priority ordering (unbounded)

@ DelayQueue: elements become available after a delay

76 /108

ConcurrentSkipListMap/Set: Sorted and Concurrent

@ Provides sorted keys with concurrent access
@ Useful for range queries and ordered maps

@ Higher overhead than hash-based maps

77/108

Concurrent Collections -
Optional

Counters Under Contention

@ AtomicLong: one hot memory location (contention hotspot)
@ LongAdder: striped counters, better throughput under contention

@ Trade-off: LongAdder.sum() is not a single atomic snapshot

78108

Concurrent Collections -
Optional

Common Mistakes

Using a concurrent map but storing mutable, non-thread-safe values
Treating weakly-consistent iteration as a strict snapshot

Mixing external locks with concurrent container locks (risk of deadlock)

Using unbounded queues where backpressure is required

79/108

Debugging & Tools

Debugging & Tools

80,108

When Concurrency Breaks: What You Usually See

@ Program hangs: no progress, CPU near 0%
@ Program spins: CPU near 100% (busy-wait, livelock)
@ Wrong results: lost updates, stale reads, out-of-order actions

@ Slowdown: contention, oversized thread pools, queue buildup

81,108

Minimal Observability Checklist

Add thread names: make logs readable (" pool-3-thread-7" is not enough)

°

@ Log at the boundary: task submit/start/end + latency
@ Always include: request id / job id to correlate events
°

Prefer counters over println spam (rate limits, queue sizes, timeouts)

82,108

Thread Dumps: A Useful Mental Model

A thread dump is a snapshot of where each thread is blocked
Look for: BLOCKED (monitor lock), WAITING (condition/park), RUNNABLE

The stack trace answers: "What am | waiting for?”

Repeating patterns across dumps indicate a real bottleneck

83,108

Hanging Program: What to Inspect First

All threads WAITING: likely missing notify/signal
Many threads BLOCKED: lock contention or deadlock
One hot RUNNABLE thread: busy loop (missing sleep/blocking call)

Thread count grows: thread leak, unbounded executor creation

84108

Deadlock: The Signature

@ A deadlock is circular waiting: T1 holds A, waits for B; T2 holds B, waits for A

@ A thread dump often shows a cycle of locks
@ Common causes:

e inconsistent lock ordering
e calling into unknown code while holding a lock

85,108

Timeouts as a Design Tool

@ Timeouts prevent infinite waits and turn hangs into errors

@ Prefer time-bounded operations in production code

Future<Result> f = pool.submit(this::work);
try {
Result r = f.get(200, TimeUnit.MILLISECONDS);
} catch (TimeoutException ex) {
f.cancel(true); // interrupt if running

}

86 /108

Debugging & Tools

Interrupts: The Cancellation Mechanism

@ interrupt() is a request to stop, not a force-kill
@ Blocking calls (sleep/wait/join/queue ops) typically respond to interrupts
@ Best practice: catch InterruptedException and restore the flag

87,108

Debugging & Tools .
Optional

Reproducibility: Reduce Non-determinism

Shrink the problem: fewer threads, fewer inputs, shorter run time
Control scheduling a bit: fixed thread pool size, fixed seeds

Add assertions for invariants (counts, bounds, ordering where required)

Prefer deterministic tests, but accept that some bugs are "Heisenbugs”

88,108

Typical Root Causes (Fast Map)

@ Hang — missing notification, deadlock, forgotten shutdown ()
@ Spin — busy wait, broken condition loop, wrong volatile/atomic usage
@ Wrong result — race condition, non-atomic compound action

@ Slow — lock contention, too many threads, tiny tasks (overhead)

89108

What Not to Do

Do not "fix" by adding random sleep calls

°
@ Do not add heavy logging inside hot locks (can change timing a lot)
@ Do not use Thread.stop() or force-kill threads

°

Do not block inside synchronized for long operations (1/O, network)

90,108

Tooling (Mention Only)

Thread dumps: JVM can print stacks for all threads (platform dependent)
Profiling: VisualVM, Java Flight Recorder (JFR), async-profiler

Metrics: queue sizes, pool utilization, timeouts, error rates

Rule: measure first, optimize second

91/108

Performance & Case Studies

Performance & Case Studies

92/108

Amdahl's Law (Reality Check)

o If fraction p is parallelizable, speedup is bounded by:

1

W=y
1
1-p

@ Even with infinite cores: S(oc0) = =
@ Optimize the sequential bottleneck first

93,108

Throughput vs Latency

Throughput: tasks per second
Latency: time per task (often care about p95/p99)
Adding threads can increase throughput but hurt tail latency

Choose based on product requirements

94 /108

CPU-bound vs |/O-bound Thread Pools

o CPU-bound: start near #cores threads (avoid oversubscription)
@ |/O-bound: can use more threads, but watch queueing and memory

@ Rule: measure and tune; defaults are rarely perfect

95,108

Contention: Make the Critical Section Small

Reduce shared mutable state
Partition: sharding / lock striping

Use atomic data structures (where they fit)

Move slow work outside locks (I/0O, allocations, callbacks)

96 /108

False Sharing (Cache Lines)

@ Two independent hot fields on the same cache line — performance drops
@ Symptoms: scaling stops early, CPU cycles wasted on cache coherence

o Fixes: padding, separate objects, restructure arrays

97/108

Work Distribution: Avoid Tiny Tasks

@ Too-small tasks — overhead dominates (scheduling, context switches)
@ Chunk work: process ranges / batches

@ For uneven tasks, use a queue (work stealing is a deeper topic)

98/108

Performance & Case Studies .
Optional

Backpressure: Bounded Queues

@ Unbounded queues hide overload until you run out of memory
@ Bounded queues force the system to slow down early

@ Choose a rejection/overflow strategy (drop, block, retry, fail fast)

99 /108

Performance & Case Studies

Profiling vs Guessing

@ The bottleneck is usually not where you expect
@ Measure: CPU, allocations, lock contention, queue sizes

@ Optimize one thing at a time; keep correctness tests

100/108

Microbenchmark Pitfalls (Mention Only)

e JVM warm-up and JIT compilation change performance over time
@ Dead-code elimination can remove work you think you measured

@ Use JMH for serious microbenchmarks

101/108

Case Study: Web Request Handling

@ Task: serve many independent requests concurrently
@ Use a bounded thread pool; avoid creating threads per request
@ Protect shared caches with concurrent maps

@ Add timeouts for upstream calls (avoid thread starvation)

102 /108

Case Study: Batch Processing Pipeline

@ Producer stage reads input; worker stage transforms; sink stage writes output
@ Use BlockingQueue between stages (backpressure)

@ Separate pools for I/O vs CPU stages (isolation)

103 /108

Performance & Case Studies .
Optional

Takeaways

@ Correctness first: avoid shared state, use the right primitives
@ Use executors and concurrent collections for safer defaults

@ Measure performance; tune threads/queues based on workload

104 /108

Wrap-up

105 /108

Key Takeaways

© Concurrency is about correctness first, then performance
@ Prefer no sharing — immutability — synchronization
© Use ExecutorService for lifecycle and policy control

@ Learn the standard patterns (producer-consumer, cancellation)

106 /108

Recommended References

e Java Concurrency in Practice (Goetz et al.)
e Official Java docs: docs.oracle.com/en/java/

@ Concurrency utilities overview: java.util.concurrent

107 /108

https://docs.oracle.com/en/java/
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html

Questions?

@ Shuhao Zhang(Huazhong University of Science and Technology (HUST))
e Email: shuhao_zhang[at]hust.edu.cn

@ Homepage: shuhaozhangtony.github.io

108/108

https://shuhaozhangtony.github.io/

	Motivation & Mental Model
	Java Threading Fundamentals
	Synchronization Essentials
	ExecutorService and Thread Pools
	Patterns & Pitfalls
	Locks & Executor Patterns
	Synchronizers
	Concurrent Collections
	Debugging & Tools
	Performance & Case Studies
	Wrap-up

