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| =
Logistics

e Format: lecture-only (no labs, no tutorials)

@ Assumed background: basic Java, basic data structures

@ Goal: build a practical mental model for writing correct concurrent Java programs
e We focus on Java 17+ APlIs; no deep Java Memory Model (JMM) theory
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Agenda

@ Motivation & mental model (parallel vs concurrent)

@ Threads: lifecycle, creating threads, joining

© Correctness: races, synchronized, visibility

@ Coordination: wait/notify and blocking

© Executors & thread pools: safe structure for concurrency

Q Patterns & pitfalls: producer-consumer, deadlock, starvation

@ More tools: locks & executor patterns

© Synchronizers & concurrent collections

© Debugging & operational tips

@ Performance intuition & wrap-up
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Motivation & Mental Model

Motivation & Mental Model
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Why Parallel / Concurrent Computing?

@ More cores are common,; single-core speed is limited (power/heat)
o We want either:

o Lower latency: respond faster
e Higher throughput: do more work per second

@ Real systems: web services, data processing, simulations, Al pipelines
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Three Related Words

Concurrency

Multiple tasks make progress overlapping in time (may run on 1 core).

Parallelism

Multiple tasks run at the same time (requires multiple cores).

Distributed

Tasks run on different machines (network + partial failures).
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A Simple Hardware Picture

@ CPU cores execute instructions
@ Each core has private caches; all cores share main memory

@ Key implication: shared memory is not instantly consistent

Core 2 + L1/L2

Core 1 + L1/L2

Core 3 + L1/L2

[ Main Memory (RAM) }
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Motivation & Mental Model

Memory Hierarchy (Why Performance is Non-Linear)

Processor
Control S . Tertiary
|1 econdary Storage
— 20d/3rd Main S(tD"ir:kg)e (Tape)
? ~ 9, Level Memory
Datapath| & 1IJ] 2 & Cache [J| ORAM)
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Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks Ms Gs Ts
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What Makes Concurrency Hard?

Non-determinism: many valid interleavings
Shared mutable state: races + visibility problems

Liveness hazards: deadlock, starvation

Debugging is difficult because bugs may disappear when you add logs
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What We Will Cover (and Skip)

Cover Skip / mention only
@ Threads and interruption @ Deep JMM formalism
@ synchronized, volatile, atomics @ Fork/Join details
@ Executors and thread pools @ Lock-free algorithm design
@ Common patterns + pitfalls @ Distributed systems topics
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A Rule of Thumb

Prefer simplicity over cleverness
If you can avoid sharing state, do it. J

@ Immutability and confinement are the easiest correctness tools

@ When you must share state, synchronize deliberately
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Java Threading Fundamentals

Java Threading Fundamentals
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ore
Creating Threads: Two Common Ways

o Extend Thread (simple, but less flexible)
@ Implement Runnable / Callable<T> (preferred)

Key idea
A thread runs code; a task is the code to run. J
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Java Threading Fundamentals -
Core

Example: Minimal Thread Creation

public class HelloThreads {
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(() ->
System.out.println("Hello from " + Thread.currentThread() .getName()));
t.startO;
t.join();
System.out.println("Done") ;
}
}
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Thread Lifecycle (Practical View)

NEW — created, not started

RUNNABLE — eligible to run (or running)

BLOCKED / WAITING — waiting for a lock/condition
TERMINATED — finished

Debug hint

If your program "hangs”, identify which threads are waiting, and on what.
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Thread Lifecycle: State Diagram

start ) run_ends

RUNNABLE

TERMINATED

wait/sleep/join enter synchronized
notify /timeout lock acquired

y' <
WAITING BLOCKED
TIMED WAITING
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Java Threading Fundamentals

Race Condition: The Classic Counter

public class RaceCondition {
private static int counter = O;

public static void main(String[] args) throws InterruptedException {
Runnable task = () -> {
for (int i = 0; i < 100_000; i++) counter++; // not atomic

18

Thread t1 = new Thread(task);
Thread t2 = new Thread(task);
til.start();
t2.start();
tl.join();
£2.join();

System.out.println("Expected 200000, actual " + counter);
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Why counter++ Loses Updates

Thread 1
1) read ¢ (=0)
2) add 1 (local=1)
3) write ¢ (=1)

One possible interleaving:
Tl:read 0 T2:read 0 TI1: writel T2: writel
Result: two increments, but final ¢ =1 (lost update)

Thread 2
1) read c (=0)
2) add 1 (local=1)
3) write ¢ (=1)
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Java Threading Fundamentals

Two Categories of Concurrency Bugs

Safety (Wrong result)

Race conditions, visibility issues, broken invariants. J
Liveness (No progress)

Deadlock, starvation, livelock, thread leaks. J
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Java Threading Fundamentals

Cancellation and Interruption

@ Java uses cooperative cancellation
© Thread.interrupt() sets an interrupt flag

@ Blocking calls may throw InterruptedException

Rule
If you catch InterruptedException, either propagate it or restore the flag. J
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Java Threading Fundamentals

Interruption Pattern

try {
while (!Thread.currentThread().isInterrupted()) {
// do work

Thread.sleep(50);
}
} catch (InterruptedException e) {
Thread.currentThread() .interrupt(); // restore

3
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Synchronization Essentials

Synchronization Essentials
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What Does Synchronization Solve?

@ Mutual exclusion: prevent conflicting updates
o Visibility: make writes by one thread visible to others

@ Ordering: constrain reordering across threads
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A Typical Synchronization Bug (Diagram)

@ Symptom: occasionally wrong results or hangs

e Cause: missing mutual exclusion / missing condition coordination

balance = get_balance(account);
balance = balance — amount;

Execution - - ool :
sequence alance = get_balance(account);

seen by CPU balance = balance — amount; Context switch
put_balance(account, balance);

put_balance(account, balance);
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Synchronization Essentials
Core

The Monitor ldea: synchronized

e Every Java object can act as a lock (monitor)
@ synchronized enforces:

e only one thread executes a critical section at a time
e a visibility boundary when entering/exiting the monitor
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Synchronization Essentials

Fixing the Counter with synchronized

public class SynchronizedCounter {

}

private int counter = 0;

public synchronized void inc() {
counter++;

}

public synchronized int get() {
return counter;

}
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volatile: Visibility Without Mutual Exclusion

@ volatile makes reads/writes visible across threads
@ It does not make compound actions atomic

@ Typical use: stop flags, configuration snapshots

Anti-pattern
volatile int x; x++; is still not atomic. J
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Visibility and Ordering: A Minimal Picture

Thre?d 1 happens-before vi voig}:rffél 2
1) write data 1) if (volatileFlag)
2) volatileFlag = true 2) read data

Takeaway: volatile gives visibility 4+ ordering for the flag
but does not make compound updates (like counter++) atomic.
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Synchronization Essentials
Core

Atomic Variables

@ AtomicInteger, AtomicLong, AtomicReference<T>
@ Provide atomic read-modify-write operations (CAS based)

@ Often good for counters, IDs, statistics

Performance note
For highly contended counters, consider LongAdder. J
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Waiting for a Condition: wait/notify

@ Use when a thread must wait until a condition becomes true

o Always call wait () inside a loop checking the condition

synchronized (lock) {
while (!condition) {
lock.wait();
}
// proceed
}
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Synchronization Essentials

wait() and notify () (Conceptual Flow)

A

Thre
(prod

Thread A
(consumer)

nter monito Monitor }

synchronized (lock)
check c‘:ndition

€r monitor

Condition
{§e8-, queue not empty)
| false

ucerhake condition

wait (): releases lock )
Rule: always wait () in a while loop

(spurious wakeups + condition may change)
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From wait/notify to Higher-Level Tools

@ Higher-level concurrency utilities reduce mistakes:

e BlockingQueue (producer-consumer)
o CountDownLatch, Semaphore
e ReentrantLock + Condition

@ Principle: prefer library abstractions over custom locking
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ExecutorService and Thread Pools

ExecutorService and Thread Pools
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Why Not Create Threads Everywhere?

@ Threads are not free: stack memory, context switching, scheduling overhead
@ Unbounded thread creation can crash a service

o We want a policy: queueing, limits, naming, shutdown
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ExecutorService and Thread Pools

Executor Framework: Core ldea

@ Separate task submission from task execution

@ Use a thread pool to reuse worker threads
@ Main APls:

o Executor (execute)
o ExecutorService (submit, shutdown)
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ExecutorService and Thread Pools

Executor Framework (Diagram)

Executors.newScheduledThreadPool
tasks thread pool

O

execution
task queue

policy
506000]
o

> > > >
> > > >
> > P>
> > > b

N

Define in Execute() of

define as Runnable of each
the executor class

Executor object
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ExecutorService and Thread Pools
Core

Task Pool Intuition (Diagram)

@ A fixed number of workers repeatedly pull tasks from a queue

@ This gives you a global place to enforce: limits, naming, shutdown, monitoring

\9, 0*0
Thread 1 ,;% %% o4 Thread 3

06; f = \{\
% \® W2

y @s’o’@
% o2 O
5 ONG)
Thread 2 *‘I@A SA~\% Thread 4
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ExecutorService and Thread Pools

Thread Pool in One Picture

Thread 1
—
Thread 2
Worker

- it/exe ute
sCLII;)en:?t:htfi fExe cutorServi ce]—>

Key idea: decouple submission from execution
and reuse a bounded set of worker threads
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Example: Parallel Work with invokeAll

import java.util.*;
import java.util.concurrent.x*;

public class ExecutorInvokeAll {
public static void main(String[] args) throws Exception {
ExecutorService pool = Executors.newFixedThreadPool(4);
try {
List<Callable<Integer>> tasks = new ArrayList<>();
for (int i = 0; i < 8; i++) {
int id = i;
tasks.add(() -> id * id);
}
for (Future<Integer> f : pool.invokeAll(tasks)) {
System.out.println(f.get());
}
} finally {
pool.shutdown() ;
}
}
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[ Core]
ore
Shutdown Correctly

@ shutdown() stops accepting new tasks

@ shutdownNow() also attempts to interrupt workers

@ Always make a plan for:

e timeouts
o cancellation
e resource cleanup
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Thread Pool Tuning (Rules of Thumb)

@ CPU-bound tasks: pool size =~ number of cores
@ |/O-bound tasks: larger pools may help, but measure

@ Prefer bounded queues in services (backpressure)

Warning
A large pool can increase tail latency (p95/p99) due to contention. J
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A Quick Note: CompletableFuture

@ Useful for asynchronous pipelines and composition
@ Avoid blocking inside callbacks

@ Use custom executors for control

CompletableFuture.supplyAsync(this: :fetch)
.thenApply(this: :parse)
.thenAccept (this: :store);
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Patterns & Pitfalls

Patterns & Pitfalls
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Thread-Safety by Design: The Easy Wins

o Confinement: keep mutable state inside one thread
o Immutability: share read-only objects

@ Minimize sharing: reduce shared data surface area
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Concurrent Collections (When Sharing is Needed)

@ ConcurrentHashMap: scalable map
@ CopyOnWriteArrayList: read-mostly lists

@ BlockingQueue: safe handoff between threads

Rule
Do not wrap a non-thread-safe collection and assume it is safe. J
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Patterns & Pitfalls

Producer—Consumer: Safe Handoff + Backpressure

@ Producers put work items into a bounded queue
@ Consumers take items and process them

o If producers are faster, the queue fills up = producers block (backpressure)

Producers put (BlockingQueue| take [Consumers
(tasks/events) (bounded) (workers)

If the queue is full, put blocks
= backpressure
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Patterns & Pitfalls

Producer—Consumer with BlockingQueue

import java.util.concurrent.*;

public class ProducerConsumerBlockingQueue {
public static void main(String[] args) throws Exception {
BlockingQueue<Integer> q = new ArrayBlockingQueue<>(2);

Thread p = new Thread(() -> {

try { q.put(1); q.put(2); q.put(-1); } // -1 = poison pill

catch (InterruptedException e) { Thread.currentThread().interrupt(); }
b

Thread ¢ = new Thread(() -> {
try {
for (53) {
int x = q.take();
if (x == -1) break;
System.out.println('c " + x);

} catch (InterruptedException e) { Thread.currentThread().interrupt(); }
b

p.start(); c.start(); p.join(); c.join();
}
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Patterns & Pitfalls

Deadlock: How It Happens

@ Two (or more) threads wait forever for each other

@ Common cause: inconsistent lock ordering

Thread 1 . ~_ ] Thread 2
waitsyviagts for

holds
A

X

-,
.
.,

Lock A

Cycle = no progress (deadlock)

Prevention

-

-

~

~

~
~

RN

holds
L4

Lock B

Define a global lock order and always acquire locks in that order.
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Common Pitfalls Checklist

Holding a lock while doing 1/O or calling unknown code
Forgetting timeouts in blocking operations
Using Thread.sleep() for coordination

Ignoring interruption and cancellation

Measuring only average latency (ignore tail)
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Locks & Executor Patterns

Locks & Executor Patterns
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How to Debug a "Hanging" Program (Checklist)

o Identify which threads are RUNNABLE vs BLOCKED vs WAITING

@ Look for locks: synchronized monitors and ReentrantLock
@ Symptoms to recognize:

o deadlock: circular waiting on locks
o starvation: one thread never gets CPU/lock
o thread leak: threads keep growing over time
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synchronized vs ReentrantLock (When to Use Which)

@ synchronized: simplest; auto-unlock on exceptions

@ ReentrantLock: try-lock, timed lock, multiple Condition objects

Lock lock = new ReentrantLock();
Condition notEmpty = lock.newCondition();
lock.lock();
try {
while (q.isEmpty()) notEmpty.await();
00 ooc
} finally {
lock.unlock();
}
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Thread Pool Tuning: What You Actually Control

exdcute/subfiit take
Tasks submitted Worker threads ]

Rule of thumb: bounded queue + clear rejdkhiobsp@inyeadPoolExecutor):
(protects latency and qoesRuy)Size, maximumPoolSize, keepAliveTime
workQueue, RejectedExecutionHandler
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Locks & Executor Patterns

ExecutorService: Patterns Worth Remembering

o Batch tasks: invokeAll for "same kind” tasks
o First result wins: invokeAny (with timeouts)

@ Completion order: CompletionService for streaming results

var cs = new ExecutorCompletionService<Result>(pool);
for (var t : tasks) cs.submit(t);
for (int i = 0; i < tasks.size(); i++) {
Result r = cs.take().get(); // as they finish
X
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CompletableFuture: Two Practical Rules

@ Pass a custom executor if you care about isolation

e Handle exceptions explicitly (exceptionally / handle)

ExecutorService pool = Executors.newFixedThreadPool(4);
try {
CompletableFuture.supplyAsync(this::fetch, pool)
.thenApply(this: :parse)
.exceptionally(ex -> fallback());
} finally {
pool.shutdown() ;
}
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ConcurrentHashMap: Safe Patterns

@ Prefer atomic methods: computeIfAbsent, merge
@ Avoid "check-then-act” with external locks

@ Values still need to be thread-safe (immutability helps)
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Performance Notes (Only If Asked)

@ Contended counters: LongAdder beats AtomicLong under high contention
@ More threads can increase tail latency (p95/p99)

@ Beware false sharing (adjacent hot fields on one cache line)

57,108



Synchronizers

Synchronizers
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i
Optional

Synchronizers: A Small Taxonomy

Mutual exclusion: monitor lock, ReentrantlLock
One-shot coordination: CountDownLatch
Reusable coordination: CyclicBarrier, Phaser
Permits / throttling: Semaphore

Handoff/ queues: BlockingQueue, SynchronousQueue

50 /108



CountDownlLatch: One-shot Gate

@ Use it to wait for N events to happen

o After it reaches zero, it stays open forever

var done = new CountDownLatch(tasks.size());
for (var t : tasks) {

pool.submit(() -> { try { t.run(); } finally { done.countDown(); } });
}

done.await();
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i
Optional

CyclicBarrier: Reusable Rendezvous

@ Use it when K threads must reach the same point

@ Optional "barrier action” runs when the last party arrives

var barrier = new CyclicBarrier(k, this::merge);
for (int i = 0; i < k; i++) {

pool.submit(() -> { stepl(); barrier.await(); step2(); return null; });
}
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i
Optional

Semaphore: Limit Concurrency

@ Use it to protect a scarce resource (DB connections, rate-limited API)

@ Acquire before, release after

var sem = new Semaphore(10);

void handle() throws InterruptedException {
sem.acquire();
try { callRemote(); }
finally { sem.release(); }

}
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ReadWriteLock: Many Readers, Few Writers

@ Multiple readers can proceed concurrently
o Writers are exclusive
@ Works best when reads dominate and the protected data is large

@ Simpler alternative: immutable snapshots + volatile reference
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Condition Variables: Multiple Wait Sets

@ A monitor has a single wait set; Condition allows multiple

@ Always wait in a loop (spurious wakeups)

lock.lock();
try {
while (q.isEmpty()) notEmpty.await();
var x = q.remove();
notFull.signal();
} finally {
lock.unlock();
}
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i
Optional

BlockingQueue as a Synchronizer

Producer-consumer is usually easiest with BlockingQueue
Blocking operations: put and take

Bounded queues provide backpressure

Prefer it over manual wait/notify in application code
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i
Optional

SynchronousQueue: Direct Handoff

o Capacity is 0: a put waits for a take
@ Useful for handoff designs and certain thread pool queues
e Bad fit for batching (no buffering)
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Phaser / Exchanger (Mention Only)

@ Phaser: dynamic parties + phased computation (advanced)
@ Exchanger: two threads swap objects at a rendezvous

o If you do not already need them, prefer simpler tools
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Which Synchronizer Should | Use?

Need to protect shared state? — lock / synchronized
Need to wait for N tasks? — CountDownLatch
Need K threads to meet repeatedly? — CyclicBarrier

Need to bound concurrency? — Semaphore

Need safe handoff / buffering? — BlockingQueue
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Concurrent Collections

Concurrent Collections

69 /108



Why Concurrent Collections Exist

@ Correct synchronization is hard to get right everywhere
@ Built-in concurrent data structures:

e reduce locking mistakes
o offer better scalability than a single global lock

@ Still requires a mental model: atomic methods, iteration semantics

70,108



Concurrent Collections -
Optional

Synchronized Wrapper vs Concurrent Collection

@ Collections.synchronizedList(list): one lock around every method
@ Concurrent collections often use finer-grained coordination
@ Wrapper iteration still needs external synchronization

@ Rule: prefer concurrent collections in multi-threaded code
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[ Optional |
ConcurrentHashMap: What You Can Assume

@ Safe for concurrent access without external locks
o lteration is weakly consistent (no ConcurrentModificationException)
@ Avoid check-then-act on multiple operations

@ Values should be immutable or thread-safe
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Concurrent Collections

ConcurrentHashMap: Atomic Update Patterns

@ Prefer atomic map operations over manual locking

map.computeIfAbsent (k, key -> expensiveInit(key));
map.merge(k, 1L, Long::sum);
map.compute(k, (key, v) -> v == null 7 1 : v + 1);
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CopyOnWriteArrayList: Read-mostly Workloads

@ Writes copy the whole array (expensive)
@ Reads are fast and iteration is snapshot-based
@ Great when: many readers, few writers, small-ish list

@ Bad when: frequent writes or very large lists
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Concurrent Collections

ConcurrentLinkedQueue vs BlockingQueue

@ ConcurrentLinkedQueue: non-blocking, unbounded, no backpressure
@ BlockingQueue: can block and can be bounded

o If you need producer-consumer, start with BlockingQueue
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BlockingQueue Families (Quick Guide)

@ ArrayBlockingQueue: bounded, array-based, predictable
@ LinkedBlockingQueue: optionally bounded, linked nodes
@ PriorityBlockingQueue: priority ordering (unbounded)

@ DelayQueue: elements become available after a delay
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ConcurrentSkipListMap/Set: Sorted and Concurrent

@ Provides sorted keys with concurrent access
@ Useful for range queries and ordered maps

@ Higher overhead than hash-based maps
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Concurrent Collections -
Optional

Counters Under Contention

@ AtomicLong: one hot memory location (contention hotspot)
@ LongAdder: striped counters, better throughput under contention

@ Trade-off: LongAdder.sum() is not a single atomic snapshot
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Concurrent Collections -
Optional

Common Mistakes

Using a concurrent map but storing mutable, non-thread-safe values
Treating weakly-consistent iteration as a strict snapshot

Mixing external locks with concurrent container locks (risk of deadlock)

Using unbounded queues where backpressure is required
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Debugging & Tools

Debugging & Tools
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When Concurrency Breaks: What You Usually See

@ Program hangs: no progress, CPU near 0%
@ Program spins: CPU near 100% (busy-wait, livelock)
@ Wrong results: lost updates, stale reads, out-of-order actions

@ Slowdown: contention, oversized thread pools, queue buildup
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Minimal Observability Checklist

Add thread names: make logs readable (" pool-3-thread-7" is not enough)

°

@ Log at the boundary: task submit/start/end + latency
@ Always include: request id / job id to correlate events
°

Prefer counters over println spam (rate limits, queue sizes, timeouts)
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Thread Dumps: A Useful Mental Model

A thread dump is a snapshot of where each thread is blocked
Look for: BLOCKED (monitor lock), WAITING (condition/park), RUNNABLE

The stack trace answers: "What am | waiting for?”

Repeating patterns across dumps indicate a real bottleneck

83,108



Hanging Program: What to Inspect First

All threads WAITING: likely missing notify/signal
Many threads BLOCKED: lock contention or deadlock
One hot RUNNABLE thread: busy loop (missing sleep/blocking call)

Thread count grows: thread leak, unbounded executor creation
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Deadlock: The Signature

@ A deadlock is circular waiting: T1 holds A, waits for B; T2 holds B, waits for A

@ A thread dump often shows a cycle of locks
@ Common causes:

e inconsistent lock ordering
e calling into unknown code while holding a lock
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Timeouts as a Design Tool

@ Timeouts prevent infinite waits and turn hangs into errors

@ Prefer time-bounded operations in production code

Future<Result> f = pool.submit(this::work);
try {
Result r = f.get(200, TimeUnit.MILLISECONDS);
} catch (TimeoutException ex) {
f.cancel(true); // interrupt if running

}
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Debugging & Tools

Interrupts: The Cancellation Mechanism

@ interrupt() is a request to stop, not a force-kill
@ Blocking calls (sleep/wait/join/queue ops) typically respond to interrupts
@ Best practice: catch InterruptedException and restore the flag
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Debugging & Tools .
Optional

Reproducibility: Reduce Non-determinism

Shrink the problem: fewer threads, fewer inputs, shorter run time
Control scheduling a bit: fixed thread pool size, fixed seeds

Add assertions for invariants (counts, bounds, ordering where required)

Prefer deterministic tests, but accept that some bugs are "Heisenbugs”
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Typical Root Causes (Fast Map)

@ Hang — missing notification, deadlock, forgotten shutdown ()
@ Spin — busy wait, broken condition loop, wrong volatile/atomic usage
@ Wrong result — race condition, non-atomic compound action

@ Slow — lock contention, too many threads, tiny tasks (overhead)
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What Not to Do

Do not "fix" by adding random sleep calls

°
@ Do not add heavy logging inside hot locks (can change timing a lot)
@ Do not use Thread.stop() or force-kill threads

°

Do not block inside synchronized for long operations (1/O, network)
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Tooling (Mention Only)

Thread dumps: JVM can print stacks for all threads (platform dependent)
Profiling: VisualVM, Java Flight Recorder (JFR), async-profiler

Metrics: queue sizes, pool utilization, timeouts, error rates

Rule: measure first, optimize second
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Performance & Case Studies

Performance & Case Studies
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Amdahl's Law (Reality Check)

o If fraction p is parallelizable, speedup is bounded by:

1

W=y
1
1-p

@ Even with infinite cores: S(oc0) = =
@ Optimize the sequential bottleneck first
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Throughput vs Latency

Throughput: tasks per second
Latency: time per task (often care about p95/p99)
Adding threads can increase throughput but hurt tail latency

Choose based on product requirements
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CPU-bound vs |/O-bound Thread Pools

o CPU-bound: start near #cores threads (avoid oversubscription)
@ |/O-bound: can use more threads, but watch queueing and memory

@ Rule: measure and tune; defaults are rarely perfect
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Contention: Make the Critical Section Small

Reduce shared mutable state
Partition: sharding / lock striping

Use atomic data structures (where they fit)

Move slow work outside locks (I/0O, allocations, callbacks)
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False Sharing (Cache Lines)

@ Two independent hot fields on the same cache line — performance drops
@ Symptoms: scaling stops early, CPU cycles wasted on cache coherence

o Fixes: padding, separate objects, restructure arrays
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Work Distribution: Avoid Tiny Tasks

@ Too-small tasks — overhead dominates (scheduling, context switches)
@ Chunk work: process ranges / batches

@ For uneven tasks, use a queue (work stealing is a deeper topic)
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Performance & Case Studies .
Optional

Backpressure: Bounded Queues

@ Unbounded queues hide overload until you run out of memory
@ Bounded queues force the system to slow down early

@ Choose a rejection/overflow strategy (drop, block, retry, fail fast)
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Performance & Case Studies

Profiling vs Guessing

@ The bottleneck is usually not where you expect
@ Measure: CPU, allocations, lock contention, queue sizes

@ Optimize one thing at a time; keep correctness tests
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Microbenchmark Pitfalls (Mention Only)

e JVM warm-up and JIT compilation change performance over time
@ Dead-code elimination can remove work you think you measured

@ Use JMH for serious microbenchmarks
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Case Study: Web Request Handling

@ Task: serve many independent requests concurrently
@ Use a bounded thread pool; avoid creating threads per request
@ Protect shared caches with concurrent maps

@ Add timeouts for upstream calls (avoid thread starvation)
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Case Study: Batch Processing Pipeline

@ Producer stage reads input; worker stage transforms; sink stage writes output
@ Use BlockingQueue between stages (backpressure)

@ Separate pools for I/O vs CPU stages (isolation)
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Performance & Case Studies .
Optional

Takeaways

@ Correctness first: avoid shared state, use the right primitives
@ Use executors and concurrent collections for safer defaults

@ Measure performance; tune threads/queues based on workload
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Wrap-up
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Key Takeaways

© Concurrency is about correctness first, then performance
@ Prefer no sharing — immutability — synchronization
© Use ExecutorService for lifecycle and policy control

@ Learn the standard patterns (producer-consumer, cancellation)
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Recommended References

e Java Concurrency in Practice (Goetz et al.)
e Official Java docs: docs.oracle.com/en/java/

@ Concurrency utilities overview: java.util.concurrent
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html

Questions?

@ Shuhao Zhang(Huazhong University of Science and Technology (HUST))
e Email: shuhao_zhang[at]hust.edu.cn

@ Homepage: shuhaozhangtony.github.io
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