
Introduction to Parallel Computing (Java Concurrency)
2.5-hour intensive lecture

Shuhao Zhang

Huazhong University of Science and Technology (HUST)

shuhao zhang[at]hust.edu.cn

shuhaozhangtony.github.io

January 2026

1 / 108

https://shuhaozhangtony.github.io/


Logistics

Format: lecture-only (no labs, no tutorials)

Assumed background: basic Java, basic data structures

Goal: build a practical mental model for writing correct concurrent Java programs

We focus on Java 17+ APIs; no deep Java Memory Model (JMM) theory

2 / 108



Agenda

1 Motivation & mental model (parallel vs concurrent)

2 Threads: lifecycle, creating threads, joining

3 Correctness: races, synchronized, visibility

4 Coordination: wait/notify and blocking

5 Executors & thread pools: safe structure for concurrency

6 Patterns & pitfalls: producer-consumer, deadlock, starvation

7 More tools: locks & executor patterns

8 Synchronizers & concurrent collections

9 Debugging & operational tips

10 Performance intuition & wrap-up

3 / 108



Motivation & Mental Model

Motivation & Mental Model

4 / 108



Motivation & Mental Model

Why Parallel / Concurrent Computing?
Core

More cores are common; single-core speed is limited (power/heat)

We want either:

Lower latency: respond faster
Higher throughput: do more work per second

Real systems: web services, data processing, simulations, AI pipelines

5 / 108



Motivation & Mental Model

Three Related Words
Core

Concurrency

Multiple tasks make progress overlapping in time (may run on 1 core).

Parallelism

Multiple tasks run at the same time (requires multiple cores).

Distributed

Tasks run on different machines (network + partial failures).

6 / 108



Motivation & Mental Model

A Simple Hardware Picture
Core

CPU cores execute instructions

Each core has private caches; all cores share main memory

Key implication: shared memory is not instantly consistent

Core 1 + L1/L2 Core 2 + L1/L2 Core 3 + L1/L2

Main Memory (RAM)

7 / 108



Motivation & Mental Model

Memory Hierarchy (Why Performance is Non-Linear)
Core

8 / 108



Motivation & Mental Model

What Makes Concurrency Hard?
Core

Non-determinism: many valid interleavings

Shared mutable state: races + visibility problems

Liveness hazards: deadlock, starvation

Debugging is difficult because bugs may disappear when you add logs

9 / 108



Motivation & Mental Model

What We Will Cover (and Skip)
Core

Cover

Threads and interruption

synchronized, volatile, atomics

Executors and thread pools

Common patterns + pitfalls

Skip / mention only

Deep JMM formalism

Fork/Join details

Lock-free algorithm design

Distributed systems topics

10 / 108



Motivation & Mental Model

A Rule of Thumb
Core

Prefer simplicity over cleverness

If you can avoid sharing state, do it.

Immutability and confinement are the easiest correctness tools

When you must share state, synchronize deliberately

11 / 108



Java Threading Fundamentals

Java Threading Fundamentals

12 / 108



Java Threading Fundamentals

Creating Threads: Two Common Ways
Core

Extend Thread (simple, but less flexible)

Implement Runnable / Callable<T> (preferred)

Key idea

A thread runs code; a task is the code to run.

13 / 108



Java Threading Fundamentals

Example: Minimal Thread Creation
Core

public class HelloThreads {

public static void main(String[] args) throws InterruptedException {

Thread t = new Thread(() ->

System.out.println("Hello from " + Thread.currentThread().getName()));

t.start();

t.join();

System.out.println("Done");

}

}

14 / 108



Java Threading Fundamentals

Thread Lifecycle (Practical View)
Core

NEW � created, not started

RUNNABLE � eligible to run (or running)

BLOCKED / WAITING � waiting for a lock/condition

TERMINATED � finished

Debug hint

If your program ”hangs”, identify which threads are waiting, and on what.

15 / 108



Java Threading Fundamentals

Thread Lifecycle: State Diagram
Core

NEW RUNNABLE TERMINATED

WAITING
TIMED WAITING

BLOCKED

start() run ends

wait/sleep/join

notify/timeout

enter synchronized

lock acquired

16 / 108



Java Threading Fundamentals

Race Condition: The Classic Counter
Core

public class RaceCondition {

private static int counter = 0;

public static void main(String[] args) throws InterruptedException {

Runnable task = () -> {

for (int i = 0; i < 100_000; i++) counter++; // not atomic

};

Thread t1 = new Thread(task);

Thread t2 = new Thread(task);

t1.start();

t2.start();

t1.join();

t2.join();

System.out.println("Expected 200000, actual " + counter);

}

}

17 / 108



Java Threading Fundamentals

Why counter++ Loses Updates
Core

Thread 1
1) read c (=0)
2) add 1 (local=1)
3) write c (=1)

Thread 2
1) read c (=0)
2) add 1 (local=1)
3) write c (=1)

One possible interleaving:
T1: read 0 T2: read 0 T1: write 1 T2: write 1
Result: two increments, but final c = 1 (lost update)

18 / 108



Java Threading Fundamentals

Two Categories of Concurrency Bugs
Core

Safety (Wrong result)

Race conditions, visibility issues, broken invariants.

Liveness (No progress)

Deadlock, starvation, livelock, thread leaks.

19 / 108



Java Threading Fundamentals

Cancellation and Interruption
Core

Java uses cooperative cancellation

Thread.interrupt() sets an interrupt flag

Blocking calls may throw InterruptedException

Rule

If you catch InterruptedException, either propagate it or restore the flag.

20 / 108



Java Threading Fundamentals

Interruption Pattern
Core

try {

while (!Thread.currentThread().isInterrupted()) {

// do work

Thread.sleep(50);

}

} catch (InterruptedException e) {

Thread.currentThread().interrupt(); // restore

}

21 / 108



Synchronization Essentials

Synchronization Essentials

22 / 108



Synchronization Essentials

What Does Synchronization Solve?
Core

Mutual exclusion: prevent conflicting updates

Visibility: make writes by one thread visible to others

Ordering: constrain reordering across threads

23 / 108



Synchronization Essentials

A Typical Synchronization Bug (Diagram)
Core

Symptom: occasionally wrong results or hangs

Cause: missing mutual exclusion / missing condition coordination

24 / 108



Synchronization Essentials

The Monitor Idea: synchronized
Core

Every Java object can act as a lock (monitor)

synchronized enforces:

only one thread executes a critical section at a time
a visibility boundary when entering/exiting the monitor

25 / 108



Synchronization Essentials

Fixing the Counter with synchronized

Core

public class SynchronizedCounter {

private int counter = 0;

public synchronized void inc() {

counter++;

}

public synchronized int get() {

return counter;

}

}

26 / 108



Synchronization Essentials

volatile: Visibility Without Mutual Exclusion
Core

volatile makes reads/writes visible across threads

It does not make compound actions atomic

Typical use: stop flags, configuration snapshots

Anti-pattern

volatile int x; x++; is still not atomic.

27 / 108



Synchronization Essentials

Visibility and Ordering: A Minimal Picture
Core

Thread 1
1) write data
2) volatileFlag = true

Thread 2
1) if (volatileFlag)
2) read data

happens-before via volatile

Takeaway: volatile gives visibility + ordering for the flag
but does not make compound updates (like counter++) atomic.

28 / 108



Synchronization Essentials

Atomic Variables
Core

AtomicInteger, AtomicLong, AtomicReference<T>

Provide atomic read-modify-write operations (CAS based)

Often good for counters, IDs, statistics

Performance note

For highly contended counters, consider LongAdder.

29 / 108



Synchronization Essentials

Waiting for a Condition: wait/notify
Core

Use when a thread must wait until a condition becomes true

Always call wait() inside a loop checking the condition

synchronized (lock) {

while (!condition) {

lock.wait();

}

// proceed

}

30 / 108



Synchronization Essentials

wait() and notify() (Conceptual Flow)
Core

Thread A
(consumer)

Thread B
(producer)

Monitor
synchronized(lock)

Condition
(e.g., queue not empty)

enter monitor

check condition

false

wait(): releases lock

enter monitor

make condition true

notify()

Rule: always wait() in a while loop
(spurious wakeups + condition may change)

31 / 108



Synchronization Essentials

From wait/notify to Higher-Level Tools
Core

Higher-level concurrency utilities reduce mistakes:

BlockingQueue (producer-consumer)
CountDownLatch, Semaphore
ReentrantLock + Condition

Principle: prefer library abstractions over custom locking

32 / 108



ExecutorService and Thread Pools

ExecutorService and Thread Pools

33 / 108



ExecutorService and Thread Pools

Why Not Create Threads Everywhere?
Core

Threads are not free: stack memory, context switching, scheduling overhead

Unbounded thread creation can crash a service

We want a policy: queueing, limits, naming, shutdown

34 / 108



ExecutorService and Thread Pools

Executor Framework: Core Idea
Core

Separate task submission from task execution

Use a thread pool to reuse worker threads

Main APIs:

Executor (execute)
ExecutorService (submit, shutdown)

35 / 108



ExecutorService and Thread Pools

Executor Framework (Diagram)
Core

36 / 108



ExecutorService and Thread Pools

Task Pool Intuition (Diagram)
Core

A fixed number of workers repeatedly pull tasks from a queue

This gives you a global place to enforce: limits, naming, shutdown, monitoring

37 / 108



ExecutorService and Thread Pools

Thread Pool in One Picture
Core

Client thread
submits tasks

ExecutorService Work queue

Worker
Thread 1
Worker
Thread 2
Worker

Thread N

submit/execute

Key idea: decouple submission from execution
and reuse a bounded set of worker threads

38 / 108



ExecutorService and Thread Pools

Example: Parallel Work with invokeAll

Core

import java.util.*;

import java.util.concurrent.*;

public class ExecutorInvokeAll {

public static void main(String[] args) throws Exception {

ExecutorService pool = Executors.newFixedThreadPool(4);

try {

List<Callable<Integer>> tasks = new ArrayList<>();

for (int i = 0; i < 8; i++) {

int id = i;

tasks.add(() -> id * id);

}

for (Future<Integer> f : pool.invokeAll(tasks)) {

System.out.println(f.get());

}

} finally {

pool.shutdown();

}

}

} 39 / 108



ExecutorService and Thread Pools

Shutdown Correctly
Core

shutdown() stops accepting new tasks

shutdownNow() also attempts to interrupt workers

Always make a plan for:

timeouts
cancellation
resource cleanup

40 / 108



ExecutorService and Thread Pools

Thread Pool Tuning (Rules of Thumb)
Core

CPU-bound tasks: pool size ≈ number of cores

I/O-bound tasks: larger pools may help, but measure

Prefer bounded queues in services (backpressure)

Warning

A large pool can increase tail latency (p95/p99) due to contention.

41 / 108



ExecutorService and Thread Pools

A Quick Note: CompletableFuture
Core

Useful for asynchronous pipelines and composition

Avoid blocking inside callbacks

Use custom executors for control

CompletableFuture.supplyAsync(this::fetch)

.thenApply(this::parse)

.thenAccept(this::store);

42 / 108



Patterns & Pitfalls

Patterns & Pitfalls

43 / 108



Patterns & Pitfalls

Thread-Safety by Design: The Easy Wins
Core

Confinement: keep mutable state inside one thread

Immutability: share read-only objects

Minimize sharing: reduce shared data surface area

44 / 108



Patterns & Pitfalls

Concurrent Collections (When Sharing is Needed)
Core

ConcurrentHashMap: scalable map

CopyOnWriteArrayList: read-mostly lists

BlockingQueue: safe handoff between threads

Rule

Do not wrap a non-thread-safe collection and assume it is safe.

45 / 108



Patterns & Pitfalls

Producer–Consumer: Safe Handoff + Backpressure
Core

Producers put work items into a bounded queue

Consumers take items and process them

If producers are faster, the queue fills up ⇒ producers block (backpressure)

Producers
(tasks/events)

BlockingQueue

(bounded)
Consumers
(workers)

put take

If the queue is full, put blocks
⇒ backpressure

46 / 108



Patterns & Pitfalls

Producer–Consumer with BlockingQueue

Core

import java.util.concurrent.*;

public class ProducerConsumerBlockingQueue {

public static void main(String[] args) throws Exception {

BlockingQueue<Integer> q = new ArrayBlockingQueue<>(2);

Thread p = new Thread(() -> {

try { q.put(1); q.put(2); q.put(-1); } // -1 = poison pill

catch (InterruptedException e) { Thread.currentThread().interrupt(); }

});

Thread c = new Thread(() -> {

try {

for (;;) {

int x = q.take();

if (x == -1) break;

System.out.println("c " + x);

}

} catch (InterruptedException e) { Thread.currentThread().interrupt(); }

});

p.start(); c.start(); p.join(); c.join();

}

}

47 / 108



Patterns & Pitfalls

Deadlock: How It Happens
Core

Two (or more) threads wait forever for each other
Common cause: inconsistent lock ordering

Thread 1 Thread 2

Lock A Lock B

holds holds

waits forwaits for

Cycle ⇒ no progress (deadlock)

Prevention

Define a global lock order and always acquire locks in that order.
48 / 108



Patterns & Pitfalls

Common Pitfalls Checklist
Core

Holding a lock while doing I/O or calling unknown code

Forgetting timeouts in blocking operations

Using Thread.sleep() for coordination

Ignoring interruption and cancellation

Measuring only average latency (ignore tail)

49 / 108



Locks & Executor Patterns

Locks & Executor Patterns

50 / 108



Locks & Executor Patterns

How to Debug a ”Hanging” Program (Checklist)
Optional

Identify which threads are RUNNABLE vs BLOCKED vs WAITING

Look for locks: synchronized monitors and ReentrantLock

Symptoms to recognize:

deadlock: circular waiting on locks
starvation: one thread never gets CPU/lock
thread leak: threads keep growing over time

51 / 108



Locks & Executor Patterns

synchronized vs ReentrantLock (When to Use Which)
Optional

synchronized: simplest; auto-unlock on exceptions

ReentrantLock: try-lock, timed lock, multiple Condition objects

Lock lock = new ReentrantLock();

Condition notEmpty = lock.newCondition();

lock.lock();

try {

while (q.isEmpty()) notEmpty.await();

// ...

} finally {

lock.unlock();

}

52 / 108



Locks & Executor Patterns

Thread Pool Tuning: What You Actually Control
Optional

Tasks submitted Work queue Worker threads
execute/submit take

Knobs (ThreadPoolExecutor):
corePoolSize, maximumPoolSize, keepAliveTime

workQueue, RejectedExecutionHandler

Rule of thumb: bounded queue + clear rejection policy
(protects latency and memory)

53 / 108



Locks & Executor Patterns

ExecutorService: Patterns Worth Remembering
Optional

Batch tasks: invokeAll for ”same kind” tasks

First result wins: invokeAny (with timeouts)

Completion order: CompletionService for streaming results

var cs = new ExecutorCompletionService<Result>(pool);

for (var t : tasks) cs.submit(t);

for (int i = 0; i < tasks.size(); i++) {

Result r = cs.take().get(); // as they finish

}

54 / 108



Locks & Executor Patterns

CompletableFuture: Two Practical Rules
Optional

Pass a custom executor if you care about isolation

Handle exceptions explicitly (exceptionally / handle)

ExecutorService pool = Executors.newFixedThreadPool(4);

try {

CompletableFuture.supplyAsync(this::fetch, pool)

.thenApply(this::parse)

.exceptionally(ex -> fallback());

} finally {

pool.shutdown();

}

55 / 108



Locks & Executor Patterns

ConcurrentHashMap: Safe Patterns
Optional

Prefer atomic methods: computeIfAbsent, merge

Avoid ”check-then-act” with external locks

Values still need to be thread-safe (immutability helps)

56 / 108



Locks & Executor Patterns

Performance Notes (Only If Asked)
Optional

Contended counters: LongAdder beats AtomicLong under high contention

More threads can increase tail latency (p95/p99)

Beware false sharing (adjacent hot fields on one cache line)

57 / 108



Synchronizers

Synchronizers

58 / 108



Synchronizers

Synchronizers: A Small Taxonomy
Optional

Mutual exclusion: monitor lock, ReentrantLock

One-shot coordination: CountDownLatch

Reusable coordination: CyclicBarrier, Phaser

Permits / throttling: Semaphore

Handoff / queues: BlockingQueue, SynchronousQueue

59 / 108



Synchronizers

CountDownLatch: One-shot Gate
Optional

Use it to wait for N events to happen

After it reaches zero, it stays open forever

var done = new CountDownLatch(tasks.size());

for (var t : tasks) {

pool.submit(() -> { try { t.run(); } finally { done.countDown(); } });

}

done.await();

60 / 108



Synchronizers

CyclicBarrier: Reusable Rendezvous
Optional

Use it when K threads must reach the same point

Optional ”barrier action” runs when the last party arrives

var barrier = new CyclicBarrier(k, this::merge);

for (int i = 0; i < k; i++) {

pool.submit(() -> { step1(); barrier.await(); step2(); return null; });

}

61 / 108



Synchronizers

Semaphore: Limit Concurrency
Optional

Use it to protect a scarce resource (DB connections, rate-limited API)

Acquire before, release after

var sem = new Semaphore(10);

void handle() throws InterruptedException {

sem.acquire();

try { callRemote(); }

finally { sem.release(); }

}

62 / 108



Synchronizers

ReadWriteLock: Many Readers, Few Writers
Optional

Multiple readers can proceed concurrently

Writers are exclusive

Works best when reads dominate and the protected data is large

Simpler alternative: immutable snapshots + volatile reference

63 / 108



Synchronizers

Condition Variables: Multiple Wait Sets
Optional

A monitor has a single wait set; Condition allows multiple

Always wait in a loop (spurious wakeups)

lock.lock();

try {

while (q.isEmpty()) notEmpty.await();

var x = q.remove();

notFull.signal();

} finally {

lock.unlock();

}

64 / 108



Synchronizers

BlockingQueue as a Synchronizer
Optional

Producer-consumer is usually easiest with BlockingQueue

Blocking operations: put and take

Bounded queues provide backpressure

Prefer it over manual wait/notify in application code

65 / 108



Synchronizers

SynchronousQueue: Direct Handoff
Optional

Capacity is 0: a put waits for a take

Useful for handoff designs and certain thread pool queues

Bad fit for batching (no buffering)

66 / 108



Synchronizers

Phaser / Exchanger (Mention Only)
Optional

Phaser: dynamic parties + phased computation (advanced)

Exchanger: two threads swap objects at a rendezvous

If you do not already need them, prefer simpler tools

67 / 108



Synchronizers

Which Synchronizer Should I Use?
Optional

Need to protect shared state? � lock / synchronized

Need to wait for N tasks? � CountDownLatch

Need K threads to meet repeatedly? � CyclicBarrier

Need to bound concurrency? � Semaphore

Need safe handoff / buffering? � BlockingQueue

68 / 108



Concurrent Collections

Concurrent Collections

69 / 108



Concurrent Collections

Why Concurrent Collections Exist
Optional

Correct synchronization is hard to get right everywhere

Built-in concurrent data structures:

reduce locking mistakes
offer better scalability than a single global lock

Still requires a mental model: atomic methods, iteration semantics

70 / 108



Concurrent Collections

Synchronized Wrapper vs Concurrent Collection
Optional

Collections.synchronizedList(list): one lock around every method

Concurrent collections often use finer-grained coordination

Wrapper iteration still needs external synchronization

Rule: prefer concurrent collections in multi-threaded code

71 / 108



Concurrent Collections

ConcurrentHashMap: What You Can Assume
Optional

Safe for concurrent access without external locks

Iteration is weakly consistent (no ConcurrentModificationException)

Avoid check-then-act on multiple operations

Values should be immutable or thread-safe

72 / 108



Concurrent Collections

ConcurrentHashMap: Atomic Update Patterns
Optional

Prefer atomic map operations over manual locking

map.computeIfAbsent(k, key -> expensiveInit(key));

map.merge(k, 1L, Long::sum);

map.compute(k, (key, v) -> v == null ? 1 : v + 1);

73 / 108



Concurrent Collections

CopyOnWriteArrayList: Read-mostly Workloads
Optional

Writes copy the whole array (expensive)

Reads are fast and iteration is snapshot-based

Great when: many readers, few writers, small-ish list

Bad when: frequent writes or very large lists

74 / 108



Concurrent Collections

ConcurrentLinkedQueue vs BlockingQueue
Optional

ConcurrentLinkedQueue: non-blocking, unbounded, no backpressure

BlockingQueue: can block and can be bounded

If you need producer-consumer, start with BlockingQueue

75 / 108



Concurrent Collections

BlockingQueue Families (Quick Guide)
Optional

ArrayBlockingQueue: bounded, array-based, predictable

LinkedBlockingQueue: optionally bounded, linked nodes

PriorityBlockingQueue: priority ordering (unbounded)

DelayQueue: elements become available after a delay

76 / 108



Concurrent Collections

ConcurrentSkipListMap/Set: Sorted and Concurrent
Optional

Provides sorted keys with concurrent access

Useful for range queries and ordered maps

Higher overhead than hash-based maps

77 / 108



Concurrent Collections

Counters Under Contention
Optional

AtomicLong: one hot memory location (contention hotspot)

LongAdder: striped counters, better throughput under contention

Trade-off: LongAdder.sum() is not a single atomic snapshot

78 / 108



Concurrent Collections

Common Mistakes
Optional

Using a concurrent map but storing mutable, non-thread-safe values

Treating weakly-consistent iteration as a strict snapshot

Mixing external locks with concurrent container locks (risk of deadlock)

Using unbounded queues where backpressure is required

79 / 108



Debugging & Tools

Debugging & Tools

80 / 108



Debugging & Tools

When Concurrency Breaks: What You Usually See
Optional

Program hangs: no progress, CPU near 0%

Program spins: CPU near 100% (busy-wait, livelock)

Wrong results: lost updates, stale reads, out-of-order actions

Slowdown: contention, oversized thread pools, queue buildup

81 / 108



Debugging & Tools

Minimal Observability Checklist
Optional

Add thread names: make logs readable (”pool-3-thread-7” is not enough)

Log at the boundary: task submit/start/end + latency

Always include: request id / job id to correlate events

Prefer counters over println spam (rate limits, queue sizes, timeouts)

82 / 108



Debugging & Tools

Thread Dumps: A Useful Mental Model
Optional

A thread dump is a snapshot of where each thread is blocked

Look for: BLOCKED (monitor lock), WAITING (condition/park), RUNNABLE

The stack trace answers: ”What am I waiting for?”

Repeating patterns across dumps indicate a real bottleneck

83 / 108



Debugging & Tools

Hanging Program: What to Inspect First
Optional

All threads WAITING: likely missing notify/signal

Many threads BLOCKED: lock contention or deadlock

One hot RUNNABLE thread: busy loop (missing sleep/blocking call)

Thread count grows: thread leak, unbounded executor creation

84 / 108



Debugging & Tools

Deadlock: The Signature
Optional

A deadlock is circular waiting: T1 holds A, waits for B; T2 holds B, waits for A

A thread dump often shows a cycle of locks

Common causes:

inconsistent lock ordering
calling into unknown code while holding a lock

85 / 108



Debugging & Tools

Timeouts as a Design Tool
Optional

Timeouts prevent infinite waits and turn hangs into errors

Prefer time-bounded operations in production code

Future<Result> f = pool.submit(this::work);

try {

Result r = f.get(200, TimeUnit.MILLISECONDS);

} catch (TimeoutException ex) {

f.cancel(true); // interrupt if running

}

86 / 108



Debugging & Tools

Interrupts: The Cancellation Mechanism
Optional

interrupt() is a request to stop, not a force-kill

Blocking calls (sleep/wait/join/queue ops) typically respond to interrupts

Best practice: catch InterruptedException and restore the flag

87 / 108



Debugging & Tools

Reproducibility: Reduce Non-determinism
Optional

Shrink the problem: fewer threads, fewer inputs, shorter run time

Control scheduling a bit: fixed thread pool size, fixed seeds

Add assertions for invariants (counts, bounds, ordering where required)

Prefer deterministic tests, but accept that some bugs are ”Heisenbugs”

88 / 108



Debugging & Tools

Typical Root Causes (Fast Map)
Optional

Hang � missing notification, deadlock, forgotten shutdown()

Spin � busy wait, broken condition loop, wrong volatile/atomic usage

Wrong result � race condition, non-atomic compound action

Slow � lock contention, too many threads, tiny tasks (overhead)

89 / 108



Debugging & Tools

What Not to Do
Optional

Do not ”fix” by adding random sleep calls

Do not add heavy logging inside hot locks (can change timing a lot)

Do not use Thread.stop() or force-kill threads

Do not block inside synchronized for long operations (I/O, network)

90 / 108



Debugging & Tools

Tooling (Mention Only)
Optional

Thread dumps: JVM can print stacks for all threads (platform dependent)

Profiling: VisualVM, Java Flight Recorder (JFR), async-profiler

Metrics: queue sizes, pool utilization, timeouts, error rates

Rule: measure first, optimize second

91 / 108



Performance & Case Studies

Performance & Case Studies

92 / 108



Performance & Case Studies

Amdahl’s Law (Reality Check)
Optional

If fraction p is parallelizable, speedup is bounded by:

S(N) =
1

(1− p) + p
N

Even with infinite cores: S(∞) = 1
1−p

Optimize the sequential bottleneck first

93 / 108



Performance & Case Studies

Throughput vs Latency
Optional

Throughput: tasks per second

Latency: time per task (often care about p95/p99)

Adding threads can increase throughput but hurt tail latency

Choose based on product requirements

94 / 108



Performance & Case Studies

CPU-bound vs I/O-bound Thread Pools
Optional

CPU-bound: start near #cores threads (avoid oversubscription)

I/O-bound: can use more threads, but watch queueing and memory

Rule: measure and tune; defaults are rarely perfect

95 / 108



Performance & Case Studies

Contention: Make the Critical Section Small
Optional

Reduce shared mutable state

Partition: sharding / lock striping

Use atomic data structures (where they fit)

Move slow work outside locks (I/O, allocations, callbacks)

96 / 108



Performance & Case Studies

False Sharing (Cache Lines)
Optional

Two independent hot fields on the same cache line � performance drops

Symptoms: scaling stops early, CPU cycles wasted on cache coherence

Fixes: padding, separate objects, restructure arrays

97 / 108



Performance & Case Studies

Work Distribution: Avoid Tiny Tasks
Optional

Too-small tasks � overhead dominates (scheduling, context switches)

Chunk work: process ranges / batches

For uneven tasks, use a queue (work stealing is a deeper topic)

98 / 108



Performance & Case Studies

Backpressure: Bounded Queues
Optional

Unbounded queues hide overload until you run out of memory

Bounded queues force the system to slow down early

Choose a rejection/overflow strategy (drop, block, retry, fail fast)

99 / 108



Performance & Case Studies

Profiling vs Guessing
Optional

The bottleneck is usually not where you expect

Measure: CPU, allocations, lock contention, queue sizes

Optimize one thing at a time; keep correctness tests

100 / 108



Performance & Case Studies

Microbenchmark Pitfalls (Mention Only)
Optional

JVM warm-up and JIT compilation change performance over time

Dead-code elimination can remove work you think you measured

Use JMH for serious microbenchmarks

101 / 108



Performance & Case Studies

Case Study: Web Request Handling
Optional

Task: serve many independent requests concurrently

Use a bounded thread pool; avoid creating threads per request

Protect shared caches with concurrent maps

Add timeouts for upstream calls (avoid thread starvation)

102 / 108



Performance & Case Studies

Case Study: Batch Processing Pipeline
Optional

Producer stage reads input; worker stage transforms; sink stage writes output

Use BlockingQueue between stages (backpressure)

Separate pools for I/O vs CPU stages (isolation)

103 / 108



Performance & Case Studies

Takeaways
Optional

Correctness first: avoid shared state, use the right primitives

Use executors and concurrent collections for safer defaults

Measure performance; tune threads/queues based on workload

104 / 108



Wrap-up

Wrap-up

105 / 108



Wrap-up

Key Takeaways
Core

1 Concurrency is about correctness first, then performance

2 Prefer no sharing � immutability � synchronization

3 Use ExecutorService for lifecycle and policy control

4 Learn the standard patterns (producer-consumer, cancellation)

106 / 108



Wrap-up

Recommended References
Core

Java Concurrency in Practice (Goetz et al.)

Official Java docs: docs.oracle.com/en/java/

Concurrency utilities overview: java.util.concurrent

107 / 108

https://docs.oracle.com/en/java/
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/package-summary.html


Wrap-up

Questions?
Core

Shuhao Zhang(Huazhong University of Science and Technology (HUST))

Email: shuhao zhang[at]hust.edu.cn

Homepage: shuhaozhangtony.github.io

108 / 108

https://shuhaozhangtony.github.io/

	Motivation & Mental Model
	Java Threading Fundamentals
	Synchronization Essentials
	ExecutorService and Thread Pools
	Patterns & Pitfalls
	Locks & Executor Patterns
	Synchronizers
	Concurrent Collections
	Debugging & Tools
	Performance & Case Studies
	Wrap-up

