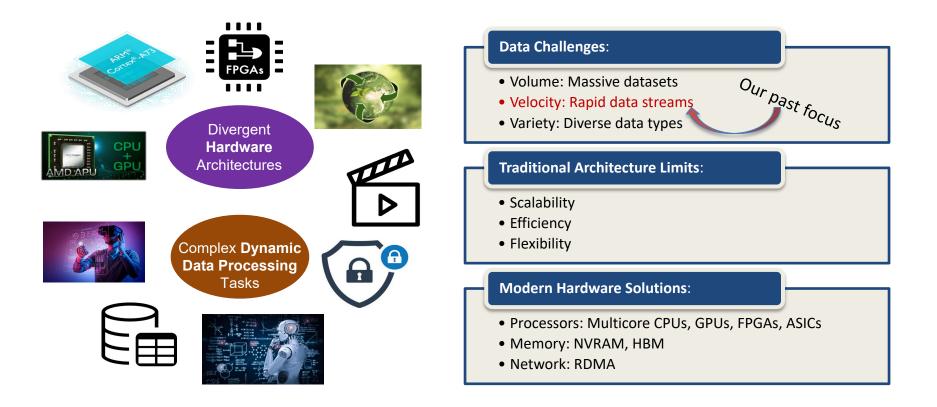


Parallelizing Data-Intensive Applications and Systems

Shuhao Zhang Assistant Professor School of Computer Science and Engineering



Introduction

Source: BACKUS: Comprehensive High-Performance Research Software Engineering Approach for Simulations in Supercomputing Systems, 2019

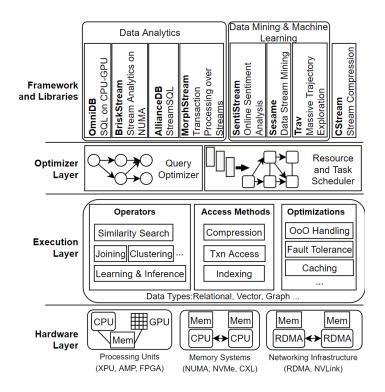
Motivation

Our Research Contributions

Journal

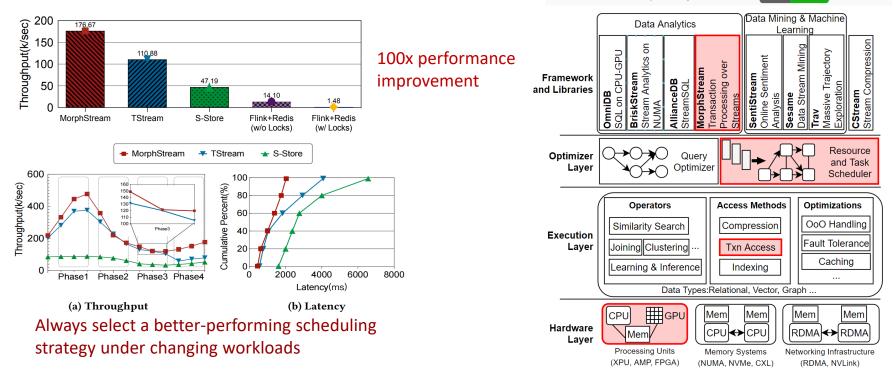
IEEE TPDS'16/ '17/ '21, IEEE TKDE'21/'24, ACM SIGMOD Rec.'19, VLDBJ'22/'23

□ Conference


SIGMOD'19/'21/'23(x2)/'24(x2)/'25, ICDE '17(x2)/'20/'23(x3)/'24, DEBS'23 (vision), EMNLP'23, USENIX ATC'20, IJCAI'20, SC'16, VLDB'13

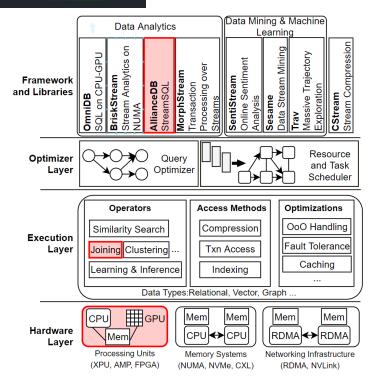
System demo and Workshop

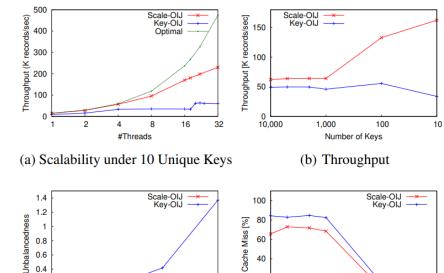
VLDB'13, IEEE BIGMM'19, VLIoT'20, ICDE'24


- Code distribution
 - BriskStream First authored patents registered in USA
 - MorphStream

- .

System Development and Optimization


□ intellistream / MorphStream lines 108.7k Public



Yancan Mao, Jianjun Zhao, Shuhao Zhang, Haikun Liu, and Volker Markl. 2023. MorphStream: Adaptive Scheduling for Scalable Transactional Stream Processing on Multicores. Proc. ACM Manag. Data 1, 1, Article 59 (May 2023), 26 pages.

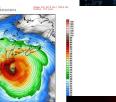
Algorithmic Innovations

AllianceDB lines 103.2k

0.4 20 0.2 Δ 0 1,000 100 10,000 1.000 100 10,000 10 10 Number of Keys Number of Keys

(c) unbalancedness

(d) LLC Load Miss H. Zhang, X. Zeng, S. Zhang, X. Liu, M. Lu and Z. Zheng, "Scalable Online Interval Join on Modern Multicore Processors in OpenMLDB." 2023 IEEE 39th International Conference on Data Engineering


(ICDE), Anaheim, CA, USA, 2023, pp. 3031-3042, doi: 10.1109/ICDE55515.2023.00232

Real-world Applications

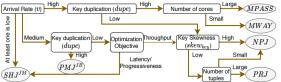
- Stream Compression on Drone [ICDE'23]
- Accelerating On-line decision augmentation (OLDA) [ICDE'23, SIGMOD'24]
- Video Database View Materialization [SIGMOD'24]
- Sentiment Analysis in Data Streams [EMNLP'23]

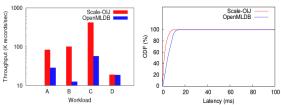

Current Research Direction: System-Wise

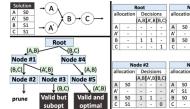
Data Management on New Hardware (DaMoN)

A) Profiling and benchmarking: to understand the gaps between new hardware and current DB algos & systems

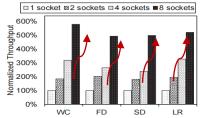
B) Algorithm Optimization: Optimizing data processing algorithms, e.g., Join, Aggregation, **Clustering on modern hardware**


C) System Optimization: Optimizing data processing systems, e.g., MapReduce, DB, Stream engine on modern hardware




Discovered major issues of opensourced stream processing systems

Decision Model for Join over Streams on Multicores



Improves commercial database system (OpenMLDB) with 8x higher throughput

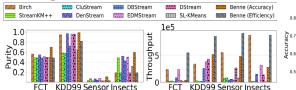
		Root			Node #1						
allo	cation	Decisions			allocation		Decisions				
		(A,B)	(A',B)	(B,C)			(A,B)	A',B	(́Β,C		
A		-	-	-	A	S0	-	-	-		
A'		•	-	•	A'		-	-	-		
В		1	1	•	в	S0	1	1	-		
C		•	-	1	C		-	-	1		
_				_	_						
	Node #2					Node #3					
allo	cation	Decisions (A,B)(A',B)(B,C)			allocation		Decisions				
							(A,B)A',B)B,C				
			_						-		

NUMA-aware Query Planner

Almost linearly scalable on NUMA architecture

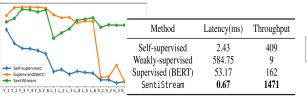
Current Research Direction: App-Wise

Database meets Artificial Intelligence (DB4AI & AI4DB)

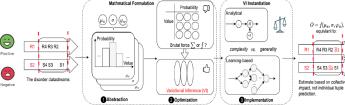

A) Benchmarking: to understand the gaps among current (HWaccelerated) DB algos & systems and AI applications

B) DB4AI: bring (HW-accelerated) database system technologies into AI to enhance their training and/or inferring efficiency

C) AI4DB: bring AI into (HW-accelerated) DB to enhance their processing capabilities on complex situations that can be hardly handled with simple models

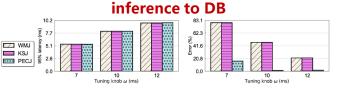

Algorithm	Year	Summa	rizing Data Structure	Window Model	Outlier Detection	Offline Refinement	
Aigoritum	Ical	Name Catalog		window woder	Outlier Detection	On mile Kennement	
BIRCH [37]	1996	CFT	Hierarchical	LandmarkWM	OutlierD	NoRefine	
CluStream [5]	2003	MCs	Partitional	LandmarkWM	OutlierD-T	Refine	
DenStream [11]	2006	MCs	Partitional	DampedWM	OutlierD-BT	Refine	
DStream [13]	2007	Grids	Partitional	DampedWM	OutlierD-T	NoRefine	
StreamKM++ [4]	2012	CoreT	Hierarchical	LandmarkWM	NoOutlierD	Refine	
DBStream [19]	2016	MCs	Partitional	DampedWM	OutlierD-T	Refine	
EDMStream [18]	2017	DPT	Hierarchical	DampedWM	OutlierD-BT	NoRefine	
SL-KMeans [9]	2020	AMS	Partitional	SlidingWM	NoOutlierD	NoRefine	

Decomposing Stream clustering algorithms into 4 dimension



Discovered reconfigurable algorithm to meet dynamic requirements

dating lexico Excellent, Fantast Stream merge Wonderful, Fun Lexicon update isqust. Worst Disappointing, Bad Semi-supervised Semi-Supervised Evaluators Bring stream pipeline to NLP



High accuracy (80%), high performance (l =0.7ms, Tpt = 1.4K) self-learning systems

(a) 95% latency of O1

Bring learning-based variational

(b) Relative error of O1

 $O = f(\mu_w, \sigma, \varphi_w)$

equivlant to

R4 R3 R2

Low processing latency with ~1% marginal error when handling disordered data streams

Challenges and Future Directions

Things are getting complicated...

□ Scalability: Keeping up with data growth.

Complexity: Managing diverse data types and processing demands.

□ Energy Efficiency: Reducing the carbon footprint.

Conclusion and Q&A

Real-World Applications showcasing our research impact.

Future Directions highlighting unexplored areas and potential advancements. **Call for Collaboration** to push the boundaries further.

Thank You

shuhao.zhang@ntu.edu.sg

Emphasis on **Modern** Hardware for data processing challenges.