
Energy-Efficient Parallel Data 
Stream Compression for IoT 

Applications
Shuhao Zhang

Assistant Professor, SUTD

1



The talk will be based on the
following works

■ [ICDE 2023] Xianzhi Zeng*, and Shuhao Zhang.
Parallelizing Stream Compression for IoT Applications on 
Asymmetric Multicores

■ [SIGMOD 2023] Yancan Mao#, Jianjun Zhao, 
Shuhao Zhang, Haikun Liu, and Volker Markl. 
MorphStream: Adaptive Scheduling for Scalable Transactional 
Stream Processing on Multicores

■ [ICDE 2023] Yu Zhang, Feng Zhang, Hourun Li, 
Shuhao Zhang, and Xiaoyong Du. CompressStreamDB: 
Fine-Grained Adaptive Stream Processing without 
Decompression

2
*: my student
#: my staff



Outline

■ Background

3



Background

4

Real-time data gathering at the patrol drone



Background

5

Real-time data gathering and Stream
compression at the patrol drone



Design Requirements of 
Stream Compression for IoT

■ Adopting compression DOES NOT 
guarantee “plug-and-play” performance 
benefits. 

■ Two requirements:
■ (R1) Low Latency Stream Compression
■ (R2) Low Energy Consumption

6



Opportunity: Asymmetric 
Multicore Processor

■ The rk3399 processor, 
a 6-core AMP under 
the same ISA

■ Be of both high-
performance and 
energy-efficiency

7

Modern ARM machines with asymmetric 
multicores are typical choices for IoT devices



Design Challenges

■ Parallelizing stream compression on 
asymmetric multicores seems a natural
choice to satisfy the aforementioned
two requirements (Low Latency, Low 
Energy)

■ However, the involved asymmetry 
effects require a careful system design. 

■ See our observations …
8



Outline

■ Background
■ Observation and Motivation

9



Observation 1

■ There are varying task-core affinities in
different parts of stream compression 
procedure.

10



Observation 2

■ There are large differences of communication 
costs among asymmetric cores.

■ C0: cross-core communication
■ C1: communication from big core to little core.
■ C2: communication from little core to big core.

11

Bandwidth and latency of cross-core communication in rk3399



Limitations of Existing Work

I. Existing mechanisms consider the coarse-
grained scheduling and do not expose the 
fine-grained task-core affinities in the 
workload. 

II. They surprisingly overlook the different 
costs of C1 and C2, which is important to 
consider when scheduling decomposed 
tasks that involves heavy inter-task 
communications.

12



Outline

■ Background
■ Observation and Motivation
■ Solution Overview

13



Our Proposal: CStream

■ We propose CStream, a novel 
framework of parallelizing stream 
compression for IoT applications.

■ CStream parallelizes stream 
compression, such that it minimizes 
energy consumption while satisfying 
a user-specified compressing 
latency constraint.

14



Overview of CStream

15

A stream compression procedure is the process 
of executing a stream compression algorithm on 
a batch of data streams. For simplification, we 
use {Algorithm – Dataset} to denote a stream 
compression procedure, e.g., {LZ4 – Stock}.



Overview of CStream

16

Exploring Pipelining Parallelism: Each 
step (s0, s1, …) can run in a pipeline 
fashion. Task fusion can be applied when 
communication overhead is large.

Exploring Data Parallelism: We can 
replicate each step to further explore data 
parallelism.



Overview of CStream

17

The decomposed tasks are scheduled to asymmetric 
multicores to minimize total energy consumption (E) without 
violation of user-specified compressing latency constraint 
(Lset), guided by a novel cost model. 



Outline

■ Background
■ Observation and Motivation
■ Solution Overview
■ Problem Formulation and Cost Models

18



Problem Formulation

■ ei stands for energy consumption of task 𝑡𝑖. 
■ (1): our goal is to minimize total energy consumption subject 

to two constraints.
■ (2): enforces that latency within constraint, which is 

determined by the pipeline bottleneck.
■ (3): enforces that resource demands within constraint.

19



The Cost Model Overview

The model estimates both energy 
consumption (𝑒𝑖) and compressing 
latency (𝑙𝑖) of each task: 

■ 1) the 𝑒𝑖 is estimated by the operational 
intensity (𝜅𝑖) of each task

■ 2) the 𝑙𝑖 is the summation of computation 
latency and communication latency of 
the each task 𝑡𝑖.

20



Estimation of ei

■ We estimate ei as a proportional 
relationship to the instructions per unit 
time (𝜂𝑖) and the latency (𝑙𝑖), and an 
inverse proportional relationship to the 
instructions per unit energy (𝜁𝑖)

21

We use operational intensity 
(κi) to estimate ηi

The estimation of instructions of unit energy consumption (ζi) involves different 
parameter values including the boundary of regions, the growth rate (i.e., a), and 
the intercept (i.e., b).



Estimation of 𝑙𝑖

■ The compression latency (li) of a task ti
is the sum of two non-overlapping 
components 𝑙()*++ and 𝑙(

)*+,.
■ 𝑙()*++ (communication latency) varies 

depending on where the task and its 
upstream tasks are scheduled.

22
Please checkout our paper for the detailed models



Outline

■ Background
■ Observation and Motivation
■ Solution Overview
■ Problem Formulation and Cost Models
■ Implementation and Evaluation

23



Implementation Details

■ Based on the propose cost model, Cstream searches 
for optimal scheduling plan by enumerating all 
possible plans with dynamic programming.

■ To adapt to dynamic environment, Cstream further 
equips with a PID control-based regulation 
mechanisms to calibrate the cost model and conduct 
re-scheduling.

■ We have further developed an energy meter that 
provides accurate measurement with low overhead1.

24
1 Technical Report (https://tonyskyzeng.github.io/downloads/tr_cstream/TR_CSTREAM.pdf)



Evaluation

■ Workloads:
■ Algorithms: tcomp32, lz4, and tdic32.
■ Datasets: Sensor, Rovio, and Stock. 

■ Hardware: 
■ Radxa Rockpi 4a (rk3399 asymmetric multicores processor)

■ Evaluation Metrics:
■ Compressing latency constraint violation (𝐶𝐿𝐶𝑉 for short)
■ energy consumption, denoted as 𝐸𝑚𝑒𝑠

■ Competing mechanisms:
■ OS, CS (Mobicom’21), RR, BO, and LO

25



End-to-End Comparison on 
Energy Consumption

26



End-to-End Comparison on 
Compressing Latency Violation

27



More Experimental Results 
Show that …

■ CStream is able to self-adjust to 
dynamic environment.

■ It is able to perform well under 
varying:

■ Compressing latency constraint
■ Batch size
■ Vocabulary duplication
■ Symbol duplication
■ Dynamic range

28



Outline

■ Background
■ Observation and Motivation
■ Solution Overview
■ Problem Formulation and Cost Models
■ Implementation and Evaluation
■ Conclusion and Outlook

29



Conclusion

■ CStream achieves the following desired 
properties: 

■ 1) when the compressing latency 
constraint (Lset) set by the user is 
relatively loose, it can achieve the least 
energy consumption

■ 2) when encountering a tight Lset, its 
latency constraint violation is always 
minimized.

30



Outlook

■ This work opens up multiple interesting 
directions for further exploration. E.g.,

■ Exploring the more complex trade-off among 
information loss, compressibility, energy 
consumption, and compressing latency with
transactional state management2.

■ Exploring compression-aware stream operation
to run directly on IoT devices without
decompression3.

31

2MorphStream: Adaptive Scheduling for Scalable Transactional Stream Processing on 
Multicores, Yancan Mao, Jianjun Zhao, Haikun Liu, and Shuhao Zhang, Volker Markl,
SIGMOD2023

3CompressStreamDB: Fine-Grained Adaptive Stream Processing without Decompression,
Yu Zhang, Feng Zhang, Hourun Li, and Shuhao Zhang, Xiaoyong Du, ICDE2023



Want to know more of our
other works?

■ Welcome to visit our website:
■ https://shuhaozhangtony.github.io/team/

32


