Energy-Efficient Parallel Data Stream Compression for IoT Applications

> Shuhao Zhang Assistant Professor, SUTD

The talk will be based on the following works

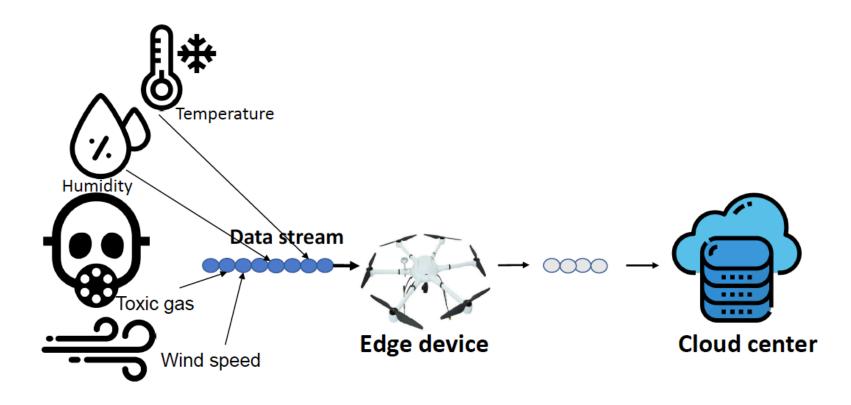
- [ICDE 2023] Xianzhi Zeng*, and Shuhao Zhang.
 Parallelizing Stream Compression for IoT Applications on Asymmetric Multicores
- [SIGMOD 2023] Yancan Mao[#], Jianjun Zhao, Shuhao Zhang, Haikun Liu, and Volker Markl. MorphStream: Adaptive Scheduling for Scalable Transactional Stream Processing on Multicores
- [ICDE 2023] Yu Zhang, Feng Zhang, Hourun Li, Shuhao Zhang, and Xiaoyong Du. CompressStreamDB: Fine-Grained Adaptive Stream Processing without Decompression

*: my student #: my staff 2

Outline

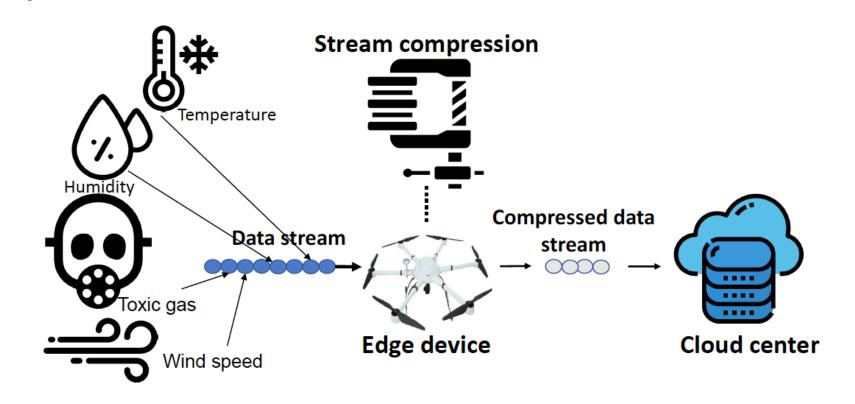
. Background

Background



Real-time data gathering at the patrol drone

Background



Real-time data gathering and Stream compression at the patrol drone

Design Requirements of Stream Compression for IoT

- Adopting compression DOES NOT guarantee "plug-and-play" performance benefits.
- . Two requirements:
 - (R1) Low Latency Stream Compression
 - (R2) <u>Low Energy</u> Consumption

Opportunity: Asymmetric Multicore Processor

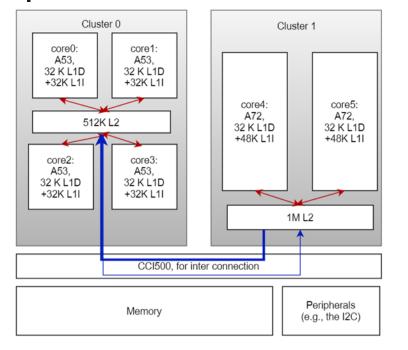


Figure 1: The 6-core AMP rk3399.

- The rk3399 processor, a 6-core AMP under the same ISA
- Be of both highperformance and energy-efficiency

Modern ARM machines with asymmetric multicores are typical choices for IoT devices

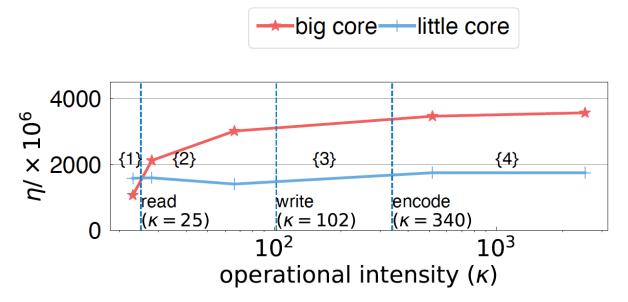
Design Challenges

- Parallelizing stream compression on asymmetric multicores seems a natural choice to satisfy the aforementioned two requirements (Low Latency, Low Energy)
- . However, the involved asymmetry effects require a careful system design.
 - See our observations …

- . Background
- Observation and Motivation

Observation 1

 There are varying task-core affinities in different parts of stream compression procedure.



Observation 2

- There are large differences of communication costs among asymmetric cores.
 - C0: cross-core communication
 - C1: communication from big core to little core.
 - C2: communication from little core to big core.

Path	Bandwidth	Latency
intra-cluster c0	2.7 GB/s	70.4 ns
inter-cluster c1	0.7 GB/s	142.4 ns
inter-cluster $c2$	0.4 GB/s	420.8 ns

Bandwidth and latency of cross-core communication in rk3399

Limitations of Existing Work

- Existing mechanisms consider the coarsegrained scheduling and <u>do not expose the</u> <u>fine-grained task-core affinities</u> in the workload.
- They surprisingly <u>overlook the different</u> <u>costs of C1 and C2</u>, which is important to consider when scheduling decomposed tasks that involves heavy inter-task communications.

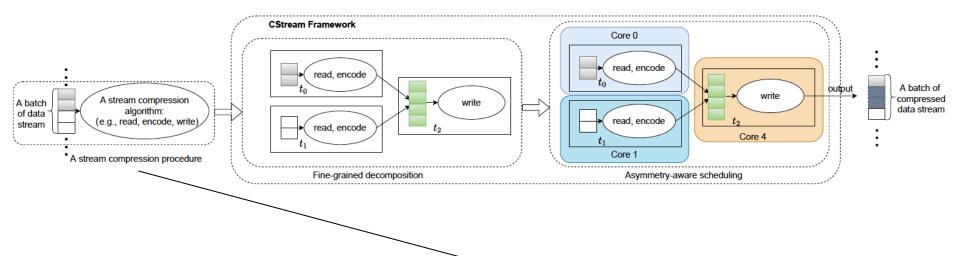
Outline

- . Background
- Observation and Motivation
- Solution Overview

Our Proposal: CStream

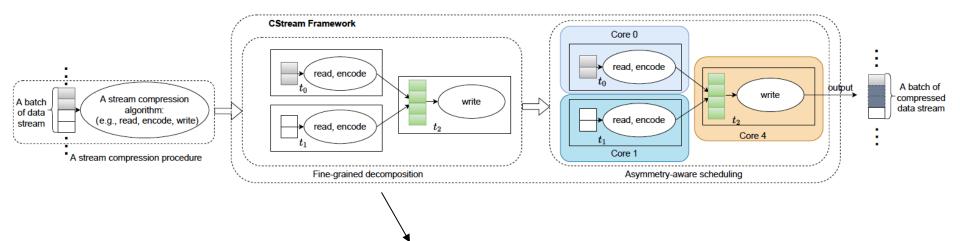
. We propose CStream, a novel framework of parallelizing stream compression for IoT applications. CStream parallelizes stream compression, such that it **minimizes** energy consumption while satisfying a user-specified compressing **latency** constraint.

Overview of CStream



A stream compression procedure is the process of executing a stream compression algorithm on a batch of data streams. For simplification, we use {Algorithm – Dataset} to denote a stream compression procedure, e.g., {LZ4 – Stock}.

Overview of CStream



Algorithm 2: Stateful stream compression

Input: input stream *inData* **Output:** output stream *outData*

1 while inData is not stopped do

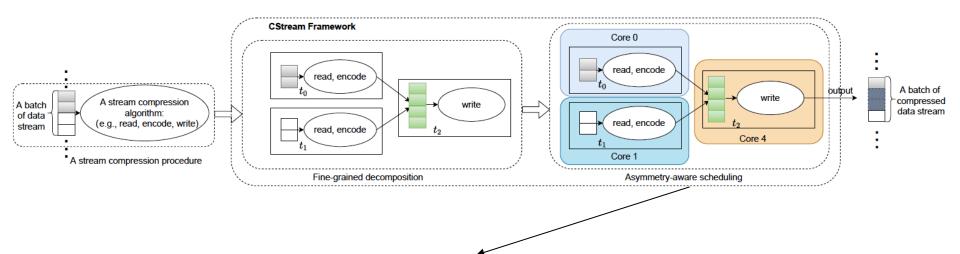
- 2 (s0) read the tuples from inData;
- 3 (s1) pre-process ;
- 4 (s2) state update ;
- 5 (s3) state-based encoding;
- 6 (s4) write compressed data to outData;

7 end

Exploring Pipelining Parallelism: Each step (s0, s1, ...) can run in a pipeline fashion. Task fusion can be applied when communication overhead is large.

Exploring Data Parallelism: We can replicate each step to further explore data parallelism.

Overview of CStream



The decomposed tasks are scheduled to asymmetric multicores to minimize total energy consumption (E) without violation of user-specified compressing latency constraint (L_{set}) , guided by a **novel cost model**.

Outline

- . Background
- Observation and Motivation
- Solution Overview
- Problem Formulation and Cost Models

Problem Formulation

$$\begin{aligned} \mininimize(E_{est} &= \sum_{i} e_{i}) \end{aligned} (1) \\ \text{s.t., } \forall t_{i} \forall j, \\ L_{set} &\geq L_{est} = \max(l_{i}) = \max(l_{i}^{comp} + l_{i}^{comm}), \end{aligned} (2) \\ C_{j} &\geq \sum_{t_{i} \text{ at core } j} \eta_{i} \end{aligned} (3)$$

- e_i stands for energy consumption of task t_i .
 - (1): our goal is to minimize total energy consumption subject to two constraints.
 - (2): enforces that latency within constraint, which is determined by the pipeline bottleneck.
 - (3): enforces that resource demands within constraint.

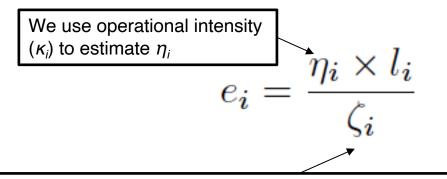
The Cost Model Overview

The model estimates both energy consumption (e_i) and compressing latency (l_i) of each task:

- 1) the e_i is estimated by the operational intensity (κ_i) of each task
- 2) the l_i is the summation of <u>computation</u> <u>latency</u> and <u>communication latency</u> Of the each task t_i.

Estimation of *e_i*

• We estimate e_i as a proportional relationship to the instructions per unit time (η_i) and the latency (l_i) , and an inverse proportional relationship to the instructions per unit energy (ζ_i)



The estimation of instructions of unit energy consumption (ζ_i) involves different parameter values including the boundary of regions, the growth rate (i.e., a), and the intercept (i.e., b).

Estimation of l_i

The compression latency (*l_i*) of a task *t_i* is the sum of two non-overlapping components *l_i^{comm}* and *l_i^{comp}*.
 l_i^{comm} (communication latency) varies depending on where the task and its upstream tasks are scheduled.

Please checkout our paper for the detailed models

Outline

- . Background
- Observation and Motivation
- Solution Overview
- Problem Formulation and Cost Models
- Implementation and Evaluation

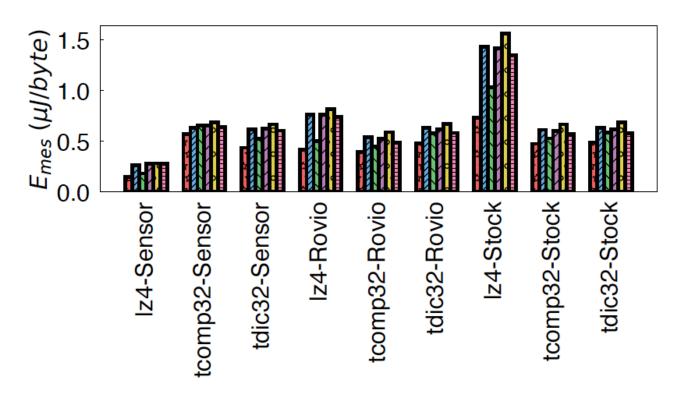
Implementation Details

- Based on the propose cost model, Cstream searches for optimal scheduling plan by enumerating all possible plans with *dynamic programming*.
- To adapt to dynamic environment, Cstream further equips with a *PID control-based* regulation mechanisms to calibrate the cost model and conduct re-scheduling.
- We have further developed an energy meter that provides accurate measurement with low overhead¹.

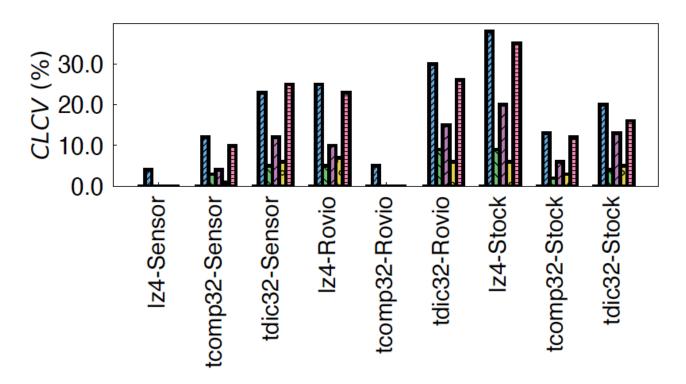
Evaluation

- Workloads:
 - Algorithms: tcomp32, lz4, and tdic32.
 - Datasets: Sensor, Rovio, and Stock.
- Hardware:
 - Radxa Rockpi 4a (rk3399 asymmetric multicores processor)
- Evaluation Metrics:
 - Compressing latency constraint violation (CLCV for short)
 - energy consumption, denoted as E_{mes}
- Competing mechanisms:
 - OS, CS (Mobicom'21), RR, BO, and LO

End-to-End Comparison on Energy Consumption



End-to-End Comparison on Compressing Latency Violation



More Experimental Results Show that ...

- CStream is able to self-adjust to dynamic environment.
- It is able to perform well under varying:
 - Compressing latency constraint
 - Batch size
 - Vocabulary duplication
 - Symbol duplication
 - Dynamic range

Outline

- Background
- Observation and Motivation
- Solution Overview
- Problem Formulation and Cost Models
- Implementation and Evaluation
- Conclusion and Outlook

Conclusion

- CStream achieves the following desired properties:
 - 1) when the compressing latency constraint (Lset) set by the user is relatively loose, it can achieve the least energy consumption
 - 2) when encountering a tight Lset, its latency constraint violation is always minimized.

Outlook

- This work opens up multiple interesting directions for further exploration. E.g.,
 - Exploring the more complex trade-off among information loss, compressibility, energy consumption, and compressing latency with transactional state management².
 - Exploring compression-aware stream operation to run directly on IoT devices without decompression³.

²MorphStream: Adaptive Scheduling for Scalable Transactional Stream Processing on Multicores, Yancan Mao, Jianjun Zhao, Haikun Liu, and Shuhao Zhang, Volker Markl, SIGMOD2023

³CompressStreamDB: Fine-Grained Adaptive Stream Processing without Decompression, Yu Zhang, Feng Zhang, Hourun Li, and Shuhao Zhang, Xiaoyong Du, ICDE2023 Want to know more of our other works?

Welcome to visit our website: https://shuhaozhangtony.github.io/team/

Thanks