
Scalable Online Interval Join on Modern Multicore
Processors in OpenMLDB

Hao Zhang#, Xianzhi Zeng†‡, Shuhao Zhang†‡, Xinyi Liu#, Mian Lu#, Zhao Zheng#

#4Paradigm Inc. †‡Singapore University of Technology and Design
{zhanghao, liuxinyi, lumian, zhengzhao} 1007420@mymail.sutd.edu.sg

@4paradigm.com shuhao_zhang@sutd.edu.sg

Abstract—OpenMLDB is an open-source machine learning
database, that provides a feature platform computing consistent
features for training and inference. The online interval join
(OIJ), i.e., joining two input streams over relative time intervals,
is becoming a core operation in OpenMLDB. Its costly nature
and intrinsic parallelism opportunities have created significant
interest in accelerating OIJ on modern multicore processors.
In this work, we first present an in-depth empirical study on
an existing parallel OIJ algorithm (Key-OIJ), which applies
a key-partitioned parallelization strategy. Key-OIJ has been
implemented in Apache Flink and used in real-world applications.
However, our study points out the limitations of Key-OIJ ,
and reveals that Key-OIJ is not capable of fully exploiting
modern multicore processors. Based on our analysis, we propose
a new approach, the Scale-OIJ algorithm with a set of
optimization techniques. Compared with Key-OIJ , Scale-OIJ
is particularly efficient for handling workloads involving fewer
keys, large time intervals, and large lateness configurations. The
extensive experiments using real workloads have demonstrated
the superior performance of Scale-OIJ . Furthermore, we have
partially integrated and tested Scale-OIJ in the latest version
of OpenMLDB, demonstrating its practicality in a machine
learning database.

I. INTRODUCTION

On-line decision augmentation (OLDA) powered by AI has
become one of the fastest-growing and promising paradigms
to enable timely decision making, and is forecast to take up
44% of total business value in AI [11]. The life cycle of an
OLDA is depicted in Figure 1, where feature in-consistency
caused by separate development teams/software stacks is a big
challenge. OpenMLDB1 is a machine learning database system
at 4Paradigm that is natively designed for feature engineering
(FE), aiming to provide a consistent and efficient FE platform
for both offline training and online serving. OpenMLDB
has been integrated into 4Paradigm’s commercial product of
machine learning platforms (the users include Industrial and
Commercial Bank of China, Yum China and so on), as well as
publicly available as open-source software (the users include
Akulaku, Huawei, 37Games and so on). It is widely used in
100+ scenarios in production, such as network traffic forecast,
anti-fraud, product recommendation [2], etc.

For a machine learning application, especially in the
industry of OLDA scenarios, time-series features, e.g., the user

1https://github.com/4paradigm/OpenMLDB

Data
• Data acquisition
• Data storage

Features
• Feature engineering
• Feature storage and

sharing

Models
• Model training
• Hyperparameter

tunning

Models
• Inference
• Result feedback

Features
• Real-time feature

engineering
• Feature serving

Data
• Real-time data

streams
• Real-time requests

ProductionOps
High availability, scalability, smooth upgrade, real-time monitoring

Offline Development

Online Serving

D
eploy O

nline

R
es

ul
t f

ee
db

ac
k

Fig. 1: Life Cycle of an OLDA Application

behaviour in the latest 10 minutes, are commonly used and
significant to the model performance. Time-series features can
be defined as window aggregations in SQL, where the online
interval join (OIJ), i.e., joining two input streams over relative
time intervals, is the core operation, as the window boundary
is usually defined with respect to the primary table/stream2,
while window data is resident in a secondary table/stream.
For example, in an online shopping platform, when a user is
browsing or searching (recorded in the action table), we will
recommend products based on the pre-defined features, which
may require joining the tuples in the history orders within the
last certain period (recorded in the order table). The window in
OIJ is a relative time window to the time of the current tuple.
It is different from the absolute time window in the general
stream window join [17], [20], which is used to constrain the
unbounded streams to a limited set of tuples. At OpenMLDB,
we observed that, for many data-driven analytical tasks, users
often have OIJ queries with a large time interval over high-
rate data streams as features [1], [18].

The stringent response time requirements by online services
(e.g., some bank users require 20 ms latency for the
feature computing) make the accelerating OIJ a critical
issue. Multicore processors that provide high processing
capacity are ideal for executing costly OIJ queries with rich
intrinsic parallelism opportunities. However, fully exploiting
the potential of a multicore processor is often challenging due

2We will use table or stream interchangeably in the paper without causing
ambiguity.

https://github.com/4paradigm/OpenMLDB

to the complex processor microarchitecture. Furthermore, as
data streams may arrive out of order, it complicates the parallel
design of OIJ as the assumption of increasing time order is
not valid. Unfortunately, there are few prior research works on
parallelizing OIJ . There is a rich literature on parallelizing
offline “interval join” [5]–[7], [13], which, however, have a
different meaning. It is defined on interval relations where
each tuple has left and right endpoints representing an
interval, and “interval join” is basically a relational join with
a predicate checking that tuple intervals overlap. In additional,
they focus on static datasets stored in a database, which usually
require full sorting to achieve a total time ordering. On the
other hand, studies of parallel online/stream join, particularly
parallel sliding window join [8], [12], [14], [15], [17], focus
on a related but independent problem. The window boundaries
are defined in terms of an absolute time interval, irrelevant of
the relative timestamps of each tuple in the data streams. Thus
the window can be naturally partitioned into independent sub-
windows for high parallelism [12], [17], which is non-trivial
for OIJ .
Key-OIJ is a key-partitioned based parallel OIJ

algorithm, which is the only available OIJ algorithm, to the
best of our knowledge. It has been adopted in Apache Flink [4]
- a state-of-the-art stream processing system, and used in real-
world applications [3]. To parallelize, Key-OIJ partitions and
buffers each incoming tuple according to its key. In this way,
input tuples may be concurrently joined with the buffer of the
same key of the opposite stream. To check the intersection
of the time interval, a thread may scan through the buffer to
filter out relevant tuples. Ideally, tuples may be immediately
removed from the buffer when they are not possible to form
any matches. However, to handle potential out-of-order stream
arrival, tuples can be only removed after a period of time.
Lateness is usually specified to represent the maximum degree
of disorder and can be used to indicate the expiration of
tuples [9].

In this paper, we first present an in-depth empirical study
of Key-OIJ using a set of real-world workloads and
synthetic datasets from 4Paradigm. Our study points out
the limitations of Key-OIJ , and reveals that Key-OIJ is
not capable of fully exploiting modern multicore processors.
First, Key-OIJ involves costly manipulation of out-of-order
data, performing extremely poorly under large lateness. In
particular, in Flink, a full data scan has to be conducted
for each join operation. Second, Key-OIJ suffers from
unbalanced workload scheduling due to its key-based partition
strategy, especially when the number of keys is small. Third,
Key-OIJ can not utilize the previously handled data among
overlapping windows, which leads to significant redundant
computation under a large window.

Based on our analysis, we propose a new approach, the
Scale-OIJ algorithm with a set of optimization techniques:

1) Single-Writer-Multiple-Reader Time-Travel Data
Structure to improve the efficiency of inserting,
retrieving, and the expiration of data. Particularly, a
concurrent two-layer skip-list is used to eliminate the

TABLE I: Notations

Notations Description
x = {t, k, p} An input tuple x with three attributes, i.e., timestamp, key

and payload
S base stream to join
R probe stream to join
v Arrival rate of a stream
u Number of unique keys in a stream
PRE preceding offset relative to the current time
FOL following offset relative to the current time
wi = (tsi , t

e
i) A window with start timestamp tsi and end timestamp tei

|wi| Window length for wi

l Lateness configuration

unnecessary data retrieval of out-of-window data, making
the lateness insignificant to the performance.

2) Dynamic Balanced Schedule to address the unbalanced
key partition. In this way, the workload assignment is
dynamically re-scheduled to balance each joiner and
improve the overall performance.

3) Incremental Window Aggregation to address the window
overlapping and reduce unnecessary repeat computation.
Specifically, the Subtract-on-Evict technique [16] is
adapted to share aggregation results among overlapping
windows. Therefore, the computation efficiency is
improved and high performance is achievable even when
the window is large.

Compared with Key-OIJ , Scale-OIJ is particularly
efficient for handling OIJ on workloads involving less keys,
large time windows, and large lateness configurations. The
evaluation results show that all of the optimizations are
effective in improving the performance of OIJ . Putting them
altogether achieves up to 24× throughput improvement and
up to 99% latency reduction on a recent multicore machine.

The remainder of this paper is organized as follows.
Section II introduces preliminary and background of this
study. Section III presents the methodology of this study
including research goals and benchmark workloads, followed
by the experimental study in Sections IV. Section V describes
our efforts in addressing the performance issues of OIJ .
We review the related work in Section VI and conclude in
Section VII.

II. PRELIMINARIES

We introduce the research background in this section. All
notations used throughout the paper are summarized in Table I.

A. OpenMLDB

OpenMLDB is an united feature platform computing
consistent features for machine learning training and inference.
It mainly consists of a batch SQL engine (offline) and a
realtime SQL engine (online), which share the same execution
plan generator as shown in Figure 2. In this paper, we focus
on the online engine, which is used to extract features in real
time. The APIs provided by OpenMLDB is based on SQL,
with an extension of Window Union3, which achieves the

3https://openmldb.ai/docs/en/main/reference/sql/dql/WINDOW_CLAUSE.html

Fig. 2: Architecture of OpenMLDB

same semantics in the SQL way as interval join. To express the
operation in Figure 3, the SQL in OpenMLDB can be written
as follows:

SELECT sum (c o l 2) ove r w1 FROM S
WINDOW w1 AS (

UNION R
PARTITION BY key
ORDER BY timestamp
ROWS_RANGE
BETWEEN 1 s PRECEDING AND 1 s FOLLOWING) ;

Here we use sum as the aggregation function to demonstrate
a complete SQL script. Such kind of features illustrated in the
above SQL are common in most machine learning scenarios.
For example, we may want some aggregation features in a
product recommendation service, say, the recent 1 hour of
user search history. This may involve an interval join of a
user table and search table 4. In addition, high throughput
and low latency are commonly required in these cases. For
instance, a 20 ms latency is strictly required by an online
banking service of our customers.

However, OpenMLDB is more suitable for stable data
processing, where a large portion of data is pre-loaded into
the system before the online feature extraction. It currently
has limited capability of stream processing. In particular,
OpenMLDB is not good at handling workloads with high
arrival rate as all the processing threads share the same data
structure; thus insertion will become a potential performance
bottleneck. Moreover, it cannot properly handle data out-of-
order, which is common in streaming. Hence, in this work we
equip OpenMLDB with the capability of stream processing.

B. Window-based Stream Processing

Stream processing performs queries on a large amount of
continuously arriving data, with low latency and real-time
requirements as the main characteristics. We define a tuple x
as x = {t, k, p}, where t, k and p are the timestamp, key, and
payload of the tuple, respectively. An input stream (denoted as
R or S) is formed by a list of tuples chronologically arriving
at the system. For a given data stream, we further define the
number of tuples arriving in one second (i.e., tuples/s) as
arrival rate (v), and use the number of unique keys (u) to
reflect the total amount of different keys in the streams. To
handle continuous input streams, at a moment in time, we

4In the context of stream processing, it would be user stream and search
stream

usually operate on only a continuous bounded subset of the
stream data (i.e., a window), which is defined below.

Definition 1: We define a window as wi = (tsi , t
e
i), where

the timestamps tsi and tei indicate the start and end time of
window wi, respectively. With regards to the data stream R, its
tuples on wi can be defined as wR

i = {(t, k, p) | tsi ≤ t < tei}.
We denote |tei − tsi | by |wi| as the window length.

A tuple x0 with a smaller timestamp t0 may arrive even later
in the system than a tuple x1 with a larger timestamp t1. To
handle such out-of-order arrival, lateness is usually used
to allow late arrival of tuples. In particular, the lateness
l specifies how much time tuples can be late in the system.
As a result, the expiration of tuples has to be delayed for l
in order to wait for the late-arrival tuples that may join with
these expired tuples, thus guaranteeing the correctness of the
final results, which has been proven in [9].

C. Parallel Online Interval Join

Definition 2: The OIJ joins elements of two streams S as
the base stream and R as the probe stream, on the condition
that S and R have a common key and tuples of stream R
have timestamps that lie in the relative time window to the
timestamp of stream S. The time window is denoted by (PRE,
FOL), corresponding to the preceding and following offsets
relative to the current timestamp. S ⋊⋉OIJ R are defined as all
the interval join results {w⋊⋉

i | ∀Si ∈ S} between S and R.
w⋊⋉

i = {< Si, Rj > |wi.start ≤ Rj .timestamp ≤ wi.end
and Rj .key = Si.key, ∀Rj ∈ R}

where wi = (Si.timestamp−PRE, Si.timestamp+FOL).
Finally the join results are aggregated, which will be used as
features. The cardinality of aggregation results of S ⋊⋉OIJ R
will be the same as that of the base stream S. It is important
to note that the time window in OIJ is relative to the tuple in
the base stream rather than an absolute time window in normal
stream join [17].

Figure 3a illustrates an example of OIJ over two data
streams with a time window of (-2s, 0), which means
only the tuples arriving within 2 seconds relatively to
the current tuple are concerned. The interval join results
S ⋊⋉OIJ R are <s1, r1>, <s2, r3>, <s2, r4> and <s3, r5>,
which are then aggregated per Si to generate the final
results <s1, agg(r1)>, <s2, agg(r3, r4)> and <s3, agg(r5)>.
By comparison, Figure 3b shows the common sliding window
join with a window size of 3s and slide of 2s. In each
slide window, every tuple from S is compared with every
tuple from R on the equality condition of key without further
checking on the timestamps. The slide window join results S
⋊⋉slide R (after removing duplicates) are <s1, r1>, <s2, r2>,
<s2, r3>, <s2, r4> and <s3, r5>, where <s2, r2> is included
as no relative window constraint is enforced for the sliding
window.

The Current Solution: Key-OIJ . Parallelizing
the streaming operations to improve performance by
better exploiting modern hardware gained much traction
recently [21]. To the best of our knowledge, Key-OIJ [4]
is surprisingly the only available parallel algorithm of OIJ .

s1

r1r2r5 r4 r3

s2s3

r1

ABBBA

ABA

timestamp 8 7 6 5 4 3 2 1
key

R tuples
relative window

key

S tuples

(a) Interval Join

s1

r2r5 r4 r3

s2s3

r1

ABBBA

ABA

8 7 6 5 4 3 2 1timestamp

key

R tuples

absolute window

key

S tuples

(b) Sliding Window Join

Fig. 3: Interval Join and Sliding Window Join

For each new incoming tuple of either R or S stream, it is
distributed to a specific working thread, which is called as
Joiner, to conduct the OIJ . The distribution is based on
the key’s hash value, and each hash value is statically bonded
to a certain Joiner. Simultaneously, the tuple is also stored in
a buffer for future reference by the opposite stream. When a
tuple is expired after a certain time (as determined by window
length |wi| and lateness l), it will be cleaned from the buffer
and is no longer possible to be joined with the opposite
stream. As the key-based partition is the major component
in achieving parallelization, we refer to this approach as
Key-OIJ in the paper.

III. METHODOLOGY

In this section, we first present the research goals of
this study. Next, we introduce our performance metrics and
benchmark workloads, followed by the system specification.

A. Research Goals

This study aims to achieve scalable OIJ as a key extension
to OpenMLDB. Specifically, we focus on reducing latency
and improving the throughput of conducting OIJ on modern
multicore servers. Two steps are involved to achieve the
goal. First, we experimentally examine the existing solution
– Key-OIJ . The common design space and critical pitfalls
are revealed through a careful profiling study. Second, we
investigate approaches to resolving the revealed bottlenecks
and propose a novel approach, namely Scale-OIJ . The
Scale-OIJ is further evaluated in comparison with existing
solutions.

B. Performance Metrics

Throughout this study, we focus on two important
performance metrics of streaming applications. First,
throughput represents the overall processing efficiency. It is
defined by the number of input tuples processed per second.
Second, latency indicates the duration between the arriving
of the tuple and the generation of its corresponding output.
To rule out the contingency, we report the average value of
throughput and cumulative distribution function (CDF) of
latency.

C. Benchmark Workloads

We evaluate four real-world proprietary workloads in our
experiments, of which there are two workloads (Workload A
and D) in the logistics sector and two workloads (Workload B
and C) in the retail sector. Table II summarizes our evaluated

TABLE II: Benchmark Workloads

Workload
Name

Arrival
rate v

Number
of Keys u

Window
length |w| (s)

Lateness
l (s)

Workload A 120 K/s 5 1 1
Workload B 200 K/s 111 150 10
Workload C ∞ 45 8 100
Workload D 15 K/s 5 1 2

TABLE III: Server Specification

Component Description
Processor Intel(R) Xeon(R) Gold 6252 CPU

(24 cores × 2 HyperThreading)
L3 cache size 35.75MB
Memory 384GB
OS & Compiler CentOS Linux 7, compile with g++ 8.3.1

benchmark workloads. The datasets may not be fully sorted,
hence we use lateness l to represent the degree of disorder of
the dataset in order to achieve 100% accuracy 5.
• Workload A. This workload has medium window size and

disorderliness (i.e., lateness). There are about 4000 matching
elements in each time window and 400 elements in the
range of lateness. There are 5 unique keys in this workload,
meaning that it can be divided into at most 5 partitions
according to the Key-OIJ .

• Workload B. The second workload has medium number
of unique keys and disorderliness, yet its window size is
large, with estimated 6000 matching elements in each time
window.

• Workload C. The number of unique keys and window
size are medium in this workload. For each time window,
there are about 300 elements matched. However, it has large
disorderliness. We has to store extra 10,000 elements on
average to get accurate results.

• Workload D. The data distribution in this workload is
similar to Workload A. However, it has relatively low arrival
rate of 15 K/s.

D. System Specification

We implement Key-OIJ from scratch in C++. We have
validated that our implementation significantly outperforms the
original Java-based implementation in Flink. We conduct all
our experiments on a recent multicore server with the Intel
Xeon Gold 6252 processors, as specified in Table III.

IV. THE PITFALLS OF EXISTING SOLUTIONS

In this section, we present the performance evaluation
results of applying Key-OIJ to different real-world use cases
to reveal its shortcomings. We experimentally tune Key-OIJ
to its best achievable performance in each case.

A. Overall Evaluation Results

Throughput. Figure 4 shows the throughput of Key-OIJ
with varying numbers of Joiner threads under four workloads.
We have the following key observations. First, the Key-OIJ

5In existing OpenMLDB applications, it is assumed that the aggregation
must be exactly accurate.

 0

 10

 20

 30

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
[K

 r
e

c
o

rd
s
/s

e
c
]

Threads

Workload A
Workload B
Workload C
Workload D

Fig. 4: Scalability under Four Real-world Cases

 0

 20

 40

 60

 80

 100

 1 10 100

P
e

rc
e

n
ta

g
e

 (
%

)

Latency (ms)

Workload A
Workload B
Workload C
Workload D

Fig. 5: Latency Distribution under Four Real-world Cases
(green dashed line indicates the 20 ms latency required by
a bank user of OpenMLDB)

fails to scale up with increasing core numbers when the
number of keys is small (Workload A). Such ineffectiveness
is mainly caused by the key-based partition method of
Key-OIJ (Section II-C). Specifically, when there are only
5 keys in Workload A, at most 5 Joiner threads will be
allocated. Second, the throughput of Workload B is much
lower, as a larger window requires more time for data scanning
and aggregation. Third, Key-OIJ scales relatively well on
handling Workload C, but its throughput is far lower than
that of Workload A when there are few cores. This is likely
caused by the useless visit of data outside the window, which
will be investigated further in Section IV-B. Fourth, when the
input arrival rate is low (Workload D), Key-OIJ with a small
number of cores can reach the maximum throughput, which
is close to the arrival rate.

Latency. Figure 5 illustrates the cumulative density
function (CDF) of Key-OIJ on handling various benchmark
workloads under 16 join threads. Key-OIJ performs
relatively well in Workload A and D, with 80%-90% below 20
ms, which is generally the requirement by our users (as shown
in the green vertical line). However, it fails to deliver satisfying
latency in workloads B and C, although their throughput scales
well.

Time Breakdown. To further comprehend the
ineffectiveness of Key-OIJ , we break down its processing
time shown in Figure 6. We systematically categorize the time
spent in running the Key-OIJ as the following components:
1) lookup time, which is the time spent on visiting all stored
tuples to obtain those tuples in the time window; 2) match
time, which is the time spent on doing aggregation with
tuples in the time window; 3) other overhead, which is the
time spent on other related processing such as writing the
results, structure initialization, etc. From the breakdown, we
can see that time is spent differently on “match” and “lookup”

 0

 200

 400

 600

Workload A

Workload B

Workload C

Workload D

T
im

e
 (

m
s
)

Lookup
Match
Other

Fig. 6: Time Breakdown under Four Real-world Cases

TABLE IV: Default Workload

Parameter Value
Key Number u 100
Window Size |w| 1000 us
Lateness l 100 us
Joiner Thread 16

among workloads. Specifically, when the window size is
large (Workload B), match time becomes more dominant, as
even more time is spent on doing window aggregation. On
the contrary, when there is a medium window size but large
lateness (Workload C), lookup time is much more than match
time. This is caused by the more out-of-order tuple arrival,
and Key-OIJ has to visit more tuples for each interval join.

Finding (1): Key-OIJ leads to poor throughput when 1)
there are few keys and 2) the window is large. Furthermore,
it leads to poor latency when the lateness is large.

B. Workload Sensitivity Study

We now use a synthetic dataset to further evaluate
Key-OIJ by tuning its workload configurations. The default
workload characteristics are summarized in Table IV.

Impact of Lateness l. We investigate the effect of tuning
the lateness setting of query in Figure 7. The throughput
of Key-OIJ drops rapidly with increasing lateness. This is
because, with high lateness, Key-OIJ has to keep more tuples
in the buffer in case we miss tuples that arrive too late. For
every interval join operation, we have to visit all data stored
in the buffer to filter out the tuples within the time window,
as the data is not sorted in the Key-OIJ design. Hence, high
lateness results in more tuples stored in memory and more
time spent visiting all tuples.

We define effectiveness as the average ratio between the
number of tuples within the time window and the total number
of tuples visited as shown in Equation 1.

effectiveness =

∑Si∈S
i

|wR
i |

|R̄|

|S|
(1)

where wR
i is defined in Definition 2 and R̄ denotes all the

tuples in R that have to be visited to filter out the ones within
the time window.

As shown in Figure 7, effectiveness decreases with
increasing lateness, as extra tuples are buffered and more data
has to be visited (|R̄| becomes larger). This correlates with the
throughput trend, which reaffirms our analysis.

 0

 20

 40

 60

 80

 100

 20 100 1,000 10,000
 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
[K

 r
e

c
o

rd
s
/s

e
c
]

E
ff

e
c
ti
v
e

n
e

s
s
 [

%
]

Lateness (us)

Throughput
Effectiveness

Fig. 7: Lateness Effect

 20

 30

 40

 50

 60

 10 1001,00010,000

T
h
ro

u
g
h
p
u
t
[K

 r
e
c
o
rd

s
/s

e
c
]

Number of Keys

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 1001,00010,000
 0

 20

 40

 60

 80

 100

U
n
b
a
la

n
c
e
d
n
e
s
s

L
L
C

 M
is

s
 [
%

]

Number of Keys

Unbalancedness
LLC miss (%)

(b) Unbalancedness and LLC miss

Fig. 8: Key Number Effect

Impact of Number of Unique Keys u. Figure 8a shows
the impact of varying number of unique keys u in workloads.
There are two major observations.

First, as expected, throughput decreases fast when the
number of unique keys decreases due to the unbalanced
workloads distributed to the Joiner thread. We define the
unbalancedness as the standard deviation of workloads of
all Joiner threads in Equation 2,

unbalancedness =
1

J × µ

J∑
i=1

(Wi − µ) (2)

where Wi is the workload of joiner Ji, µ is the average
workload per joiner (i.e., µ = 1

J

∑J
i=1 Wi), and J is the

number of joiners. As presented in the red line of Figure 8b,
unbalancedness increases significantly with less number of
keys, leading to a decreasing of throughput.

Second, interestingly, there is a significant throughput
increase when K decreases from 1000 to 100. We find that
the root cause is the significant last-level cache (LLC) misses
when there are many unique keys in workloads, due to its
random access patterns when reading tuples from the buffers.
LLC misses decrease when there are fewer keys as shown
in the blue line of Figure 8b, which explains the throughput
increase at these settings.

Impact of Window Size |w|. Lastly, we show the
impact of tuning the window size in Figure 9. We can
see that the throughput of Key-OIJ drops tremendously
when enlarging the window. This is because there are
more tuples that are within the window, taking more time
for data reading and aggregation computing. Although as
the window becomes larger, the overlapping area among
neighbour windows becomes greater, Key-OIJ fails to take
advantage of the overlapping results, thus causing significant
redundant computations.

 0

 100

 200

 300

 400

 10 100 1,000 10,000

T
h

ro
u

g
h

p
u

t
[K

 r
e

c
o

rd
s
/s

]

Window size

Fig. 9: Window Size Effect

Finding (2): The unsatisfying performance of Key-OIJ is
caused by 1) its poor design in handling out-of-order data,
2) its inefficient workload distribution, and 3) its superfluous
processing of overlapping windows.

V. OPTIMIZED DESIGN OF INTERVAL JOIN

Based on the findings in Section IV, we propose
an optimized design for OIJ in this section. Overall,
we follow the key-based partition model of Key-OIJ ;
however, we allow to re-partition the data dynamically
based on the workload distribution and shared processing
of the same partition. By carefully designing the data
structures and concurrency model, we propose a light-weight
dynamic schedule algorithm to achieve high balancedness
adaptively without data replication or migration. In particular,
we design a time-travel data structure (Section V-A)
to facilitate the efficient retrieval of the window data;
Moreover, the time-travel data structure is designed to allow
single-writer-multiple-readers (SWMR), which enables the
multi-threaded shared processing for the same key. The
unbalancedness observed in Section IV-B motivates the
dynamic balanced workload schedule (Section V-B), which
is able to distribute the workload evenly to the joiners
based on the dynamic workload statistics. As also shown
in Section IV, a larger window size, which is common
in industry scenarios, indicates more data retrieval and
computation, thus decreasing the throughput significantly.
However, the large window also allows the possibility of
window overlapping, which means two neighbour window
aggregations may share a large proportion of work. Thus,
it gives us an opportunity to optimize the performance by
doing the aggregation incrementally, eliminating duplicate data
retrieval and computation for the overlapping portion.

A. Time-Travel Data Structure

1) Ordered Indexing: To facilitate efficient window data
retrieval, we carefully design an efficient time-travel data
structure based on a double-layered skip-list, as shown in
Figure 10. Basically, the first layer is a skip-list used to store
the pairs of <key, second-layer skip-list>; and each component
of the second layer is a skip-list used to store the pairs of
<timestamp, Tuple>. To locate the tuple denoted as <key,
timestamp>, we first search the first layer to get the second-
layer skip-list containing all the tuples with the key key; then
we search the second-layer skip-list to locate the tuple.

Fig. 10: SWMR Double-Layered Skip-List

 0

 50

 100

 150

 20 100 1000 10,000

T
h
ro

u
g
h
p
u
t
(K

 r
e
c
o
rd

s
/s

e
c
)

Lateness (us)

Scale-OIJ
Key-OIJ

Fig. 11: Lateness

The time-travel data structure makes it possible to locate
the window boundary in O(logNkey) + O(logNts) where
Nkey is the number of unique keys and Nts is the number
of timestamps per key. And only the effective window data
will be visited. By contrast, the baseline method has to travel
all the data to filter out the ones within the window boundary.
Hence, when the degree of out-of-order is high, i.e., lateness
is large, the baseline method performs much worse as we find
in Section IV-B.

We repeat the lateness experiment with the addition of our
optimization. As the lateness increases, the effectiveness of full
data scan is decreasing, meaning that more data access and
filtering are useless. For Key-OIJ , full data scan is a must
as data is not ordered; while for Scale-OIJ , we can utilize
the time-travel data structure to locate the window boundary
directly and only access the necessary data within the window.
As we can see from Figure 11, by enlarging the lateness,
the performance of Key-OIJ decreases, while Scale-OIJ
almost does not change.

2) SWMR Concurrency Property: In addition to the
ordering property of the time-travel data structure, it is
carefully designed to be lock-free in the multi-threaded
environment. Specifically, it supports simultaneous writing by
a single writer and reading by multiple readers without the use
of lock. Algorithm 1 details the steps to Search a tuple of one
layer of skip-list. This is a general process of searching in a
skip-list, except that the reading of nodes follows the Release-
Acquire ordering (load_acquire). Algorithm 2 demonstrates
the steps to Put a new tuple. Line 1 to Line 11 are to find
the position after which we insert the new tuple. Line 12
to Line 16 are to do the insertion atomically. The pre array
(Line 6) will store all the previous nodes before the new node,

Algorithm 1: Search A Tuple
Input: <key, ts>
Output: the node containing the matched tuple

1 node← HEAD
2 level← HEIGHT
3 while true do
4 next = load_acquire (node[level].next)
5 if next == NULL || next.key > key then
6 if level <= 0 then
7 return node

8 level = level − 1

9 else if next.key == key then
10 return node

11 else
12 node = next

13 return node

Algorithm 2: Put A New Tuple
Input: <key, ts, x>
Output: N.A.
// search the position to insert

1 node← HEAD
2 level← HEIGHT
3 while true do
4 next = node[level].next
5 if next == NULL || next.key >= key then
6 pre[level] = node
7 if level <= 0 then
8 break

9 level = level − 1

10 else
11 node = next

// insert into the skiplist
12 new_node = NewNode(x, random_height)
13 for i← 0 to height do
14 store_relaxed(new_node[i].next, pre[i].next)

15 for i← 0 to height do
16 store_release(pre[i].next, new_node)

that is, the nodes in all the levels that are just not greater than
the new node. We create a new node with random height,
which should be less than the maximum height HEIGHT .
First we’ll update the next pointers of the new_node to the
next pointers of the pre array with Relaxed ordering (Line 13
- Line 14), up to this point, there is no state change visible in
the system, as there is no link from HEAD to the new node.
Afterwards, we will update the next pointers of pre array to the
new node with Release-Acquire ordering (Line 15 - Line 16),
until when the new node is atomically visible to the readers.

For the double-layered skip-list, the algorithm is the same
for each layer, except that for the first layer, the key is the
tuple key; while for the second layer, the key is the timestamp.
This SWMR property is the core technique of enabling the
shared interval join processing of the same key, which will be
elaborated in Section V-B.

Joiner 2 Joiner 1

s1 r1

r2
s3

s4 r4

s2

window

arrives at Joiner 2s4

base

probe

Fig. 12: An Example of Shared Processing

Finding (3): Time-travel data structure eliminates the
unnecessary data retrieval of out-of-window data, making
the lateness insignificant to the performance.

B. Dynamic Schedule

As we study in Section IV-B, when the number of unique
keys is small, the performance of Key-OIJ is worse, due
to the skewed key partition. That is, some Joiners may get
more workload, while some get less, thus degrading the
performance and hurting the scalability. Thus we design a
dynamic schedule framework that allows partitioning the keys
dynamically according to the workload. Moreover, it enables
the shared processing of the same keys by multiple Joiners
simultaneously.

1) Shared Processing: We design a shared processing
framework to make it possible to process tuples of the same
key by multiple joiners. The joiners sharing the workload of
the same key form a virtual team. For the tuples with this
key, it can be randomly distributed to any member of the
virtual team without affecting the correctness. Joiners expose
the read (R) accessibility to all the members within their
virtual teams; while they keep the write (W) accessibility
exclusively to themselves. The virtual teams are maintained
via a mapping between the key (in particular, key hash range)
and the partition set, which will be atomically replaced after
a new schedule. Virtual team membership implicitly enforces
the grant of R/W permission. For every tuple assigned to
the joiner, it will insert (W) into its own index; while doing
the interval join, it can read (R) the indices from all the
members of its virtual team. Hence each joiner of a virtual
team will share a portion of tuples under the same key. As
elaborated in Section V-A, the SWMR property of our time-
travel index guarantees the correctness and effectiveness of the
shared processing framework.

We use Figure 12 to show the basic workflow of shared
processing a base tuple. When the base tuple s4 arrives at
Joiner 2, it’s going to traverse all the probe tuples within the
window, i.e., probe tuples r2 and r4, which are feasible as
Joiner 2 has the read (R) accessibility of both its local tuple
r4 and its team tuple r2.

2) Dynamic Schedule: The shared processing framework
allows dynamically re-partitioning the data without data
migration. By collecting the data distribution statistics in
runtime, we can derive the workload distribution of all the
joiners, based on which we can re-schedule the partition
assignments (i.e., key partition schedule) periodically. The

objective of the re-schedule is to reduce the unbalancedness
(as defined in Equation 2) of workload schedule among joiners.

Specifically, we formalize the problem as follows:
a) Problem Definition: Given P partitions and J joiners,

assign each Pi to Jj , where each Pi can be assigned to
multiple joiners Jj . . . Jk.

b) Objective: argminS unbalancedness(S), where S is
a key partition schedule. As during the partition scheduling,
we don’t have the knowledge of actual tuple distribution in
the time ahead, we use Equation 3 to estimate the workload
(i.e., the estimated number of tuples processed) of each joiner.

Wi =
∑
k∈Ji

|{x | key(x) = k}|
|vtk|

(3)

where {x | key(x) = k} is the set of tuples with key k
processed by all joiners and |vtk| is the size of the virtual team
of key k. For each joiner, we aggregate all the shared workload
for all keys that are currently processed by this joiner.

It is obvious that the problem is NP-hard; thus we give a
heuristic solution in Algorithm 3. To avoid the data migration
overhead, we only allow sharing the ownership of a partition
rather than transferring to another joiner. As a result, the joiner
based on the old partition schedule is guaranteed to be in the
virtual team of the key based on the new partition schedule.
This naturally solves the correctness of tuples in transmission
buffer between partitioners and joiners during the schedule
change. The basic steps are summarized as follows:

1) calculate the workload for every joiner and select the
joiners with maximum workload Jmax and minimum
workload Jmin (Line 3-4)

2) try to replicate the partition with the largest workload in
Jmax to Jmin (Line 5-7)

3) if the unbalancedness decreases by a threshold, we
break out (Line 8-9) and repeat Step 1) - 2)

4) it stops exploring if there is no change in the new
schedule after an iteration (Line 11-12)

5) the statistics will be decayed at the end (Line 13)

With the help of the dynamic schedule, we can achieve
good scalability even under a very small number of keys, as
shown in Figure 13a, where Key-OIJ scales worse due to
the unbalanced workload schedule.

We further vary the number of unique keys using the
synthetic dataset, as shown in Figure 13b. Our approach is
able to adapt to all cases and achieve balanced processing
even under the extreme case of a very small number of keys.
However, the Key-OIJ that relies on the static key partition,
fails to perform well if the number of unique keys is small.
Interestingly, for our approach, under a small number of keys,
the performance is even better than a large number of keys.
We will investigate the cause later.

Figure 13c shows the unbalancedness under a different
number of unique keys. Scale-OIJ achieves very low
unbalancedness under all cases, while unbalancedness is
high under a small number of keys for Key-OIJ , which

Algorithm 3: Dynamic Schedule
Input: Load distribution of all the keys, current key partition

schedule S
Output: optimized key partition schedule

1 Snew = S
2 while true do
3 calculate the workload Wi for every joiner Ji according

to Equation 3
4 select the maximum and minimum joiners:

Jmax = argmaxi Wi

Jmin = argmini Wi

5 add all key partitions ∀pj ∈ Jmax → priority queue
PQJmax

6 for pi ← PQJmax .top() do
7 replicate pi to Jmin in the new schedule Snew

8 if last_unbalancedness− unbalancedness > δ
then

9 break

10 PQJmax .pop()

11 if Snew does not change then
12 break

13 ∀k |xk| = λ× |xk|
14 return the new schedule Snew

 0

 100

 200

 300

 400

 500

 1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(K

 r
e
c
o
rd

s
/s

e
c
)

#Threads

Scale-OIJ
Key-OIJ
Optimal

(a) Scalability under 10 Unique Keys

 0

 50

 100

 150

 10 1001,00010,000

T
h
ro

u
g
h
p
u
t
[K

 r
e
c
o
rd

s
/s

e
c
]

Number of Keys

Scale-OIJ
Key-OIJ

(b) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 1001,00010,000

U
n
b
a
la

n
c
e
d
n
e
s
s

Number of Keys

Scale-OIJ
Key-OIJ

(c) unbalancedness

 0

 20

 40

 60

 80

 100

 10 1001,00010,000

C
a
c
h
e
 M

is
s
 [
%

]

Number of Keys

Scale-OIJ
Key-OIJ

(d) LLC Load Miss

Fig. 13: Performance under Different Number of Keys

explains why the performance is low under the case of 10
keys for Key-OIJ in Figure 13b.

Interestingly, as we can see from Figure 13b, there is a
performance drop from 10 to 1000 for Scale-OIJ and 100
to 1000 for Key-OIJ (as we also observed in Figure 8a),
which, however, is not consistent with the non-increasing trend
of unbalancedness as depicted in Figure 13c. The reasons are
two-fold:

• As the number of keys increases, the overhead associated
with each unique key is increasing, such as individual data
structure used to maintain each key, the work scheduling
overhead, etc.

• The other cause is the increase of cache miss with the
increase of the number of keys, as we have to access more

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 U

ti
liz

a
ti
o
n
 H

a
 (

%
)

Time (s)

(a) Key-OIJ

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 U

ti
liz

a
ti
o
n
 H

a
 (

%
)

Time (s)

(b) Scale-OIJ

Fig. 14: CPU Utilization for Skewed Workload

s3

r2

s4

S3 window

base

probe r3r5

S4 window

arrivess4

r1r4

Fig. 15: Incremental Window Aggregation

 10

 100

 1000

 10000

 10 100 1,000 10,000

T
h

ro
u

g
h

p
u

t
[K

 r
e

c
o

rd
s
/s

e
c
]

Window Size

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ

Fig. 16: Incremental Interval Join

data, which is estimated as #key×window. This is further
verified in Figure 13d. The LLC miss surges greatly as the
number of keys changes from 100 to 1000, which coincides
with the performance drop illustrated in Figure 13b.
Furthermore, we conduct an extra experiment on synthetic

skewed streams where a random set of hot keys flow
periodically with the same total number of records for every
key. The number of unique keys is set to 10K, which is
large enough to partition evenly even for Key-OIJ algorithm.
Other parameters are set the same as Table IV. Figure 14
shows the variation of CPU utilization for the 16 joiners along
time. It is obvious that with the dynamic schedule technique,
Scale-OIJ can adapt promptly to the frequent workload
change, revealed by the smoother CPU utilization variation
than Key-OIJ .

Finding (4): By dynamically re-schedule the assignments,
we can balance the workload of each joiner, thus improving
the overall performance.

C. Incremental Online Interval Join

As we study in the real dataset, there is a high probability
that neighbour windows would overlap during interval join,
especially when the window is large, which incurs duplicate
data access and computation. We adapt the existing Subtract-

on-Evict technique [16] to the interval join algorithm. In
this paper we only focus on the invertible aggregation
operators (e.g., sum, count, avg), which can be easily handled
by the Subtract-on-Evict technique. For other non-invertible
operators, some existing works [19] can also be adapted,
which, however, is beyond the scope of the paper.

Basically, when a stale tuple is evicted from the window,
we do a Subtract ⊖ on the running aggregate; when a new
tuple is added into the window, we do a Add ⊕. For example,
as shown in Figure 15, when we are handling the interval
join aggregation for s4, we can re-use the window aggregation
Aggs3 that is already calculated for s3. The only extra work
we have to do is to Subtract the value of r1 which is out of
window of s4, and Add the value of r4, which is not covered
by the window of s3. That is, Aggs4 = Aggs3⊖r1⊕r4. Hence
we eliminate the data retrieval and computation of r2 and r3,
which is significant if the overlap is large.

Figure 16 shows the throughputs under different window
settings. With the help of the incremental interval join
technique, our system can keep high throughput even with
large windows.

Finding (5): By incremental online interval join, we are able
to deliver high performance even when the window is large.

D. Experimental Results

We evaluate the performance of the four real-world
workloads as described in Section IV by combining all
the techniques we proposed in this section. We also
adapt SplitJoin [12] to achieve the same semantics as
OIJ . Basically, we follow their distribution and collection
framework for parallelism, and add an extra predicate to
filter out the tuples outside the relative window boundary
for each join comparison. For Workload A, Scale-OIJ
performs much better than Key-OIJ and SplitJoin, with
latency less than 10 ms, as shown in Figure 17. SplitJoin
also achieves a lower latency, which is even better than
Scale-OIJ in terms of the maximum latency, as the round-
robin workload distribution makes it more balanced. However,
its throughput is far lower than Scale-OIJ , which is
mainly caused by the heavy tuple broadcast traffic and the
full data scan when doing the join operation. For Workload
B, Scale-OIJ with incremental optimization improves the
performance significantly, in terms of both throughput and
latency as illustrated in Figure 18, as large window gives
more opportunities of sharing computation results between
neighbour windows. SplitJoin achieves even poorer
throughput than Key-OIJ for small thread settings (≤8),
which is mainly because the balancedness advantage brought
by SplitJoin is insignificant for low parallelism, while the
overhead introduced by broadcast and "all-joiners-process-all-
tuples" pattern dominates. We can see from Figure 19 that
Workload C delivers a different message, that is, Scale-OIJ
without incremental technique already boosts the performance
greatly due to the elimination of unnecessary data access
outside the window; while the incremental technique solely

 1

 10

 100

 1000

 1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(K

 r
e
c
o
rd

s
/s

e
c
)

#Threads

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(b) Latency

Fig. 17: Workload A

 1

 10

 100

 1000

 1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(K

 r
e
c
o
rd

s
/s

e
c
)

#Threads

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(b) Latency

Fig. 18: Workload B

 1

 10

 100

 1000

 1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(K

 r
e
c
o
rd

s
/s

e
c
)

#Threads

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(b) Latency

Fig. 19: Workload C

 1

 10

 100

 1000

 1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(K

 r
e
c
o
rd

s
/s

e
c
)

#Threads

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(b) Latency

Fig. 20: Workload D

 10

 100

 1000

 1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(K

 r
e
c
o
rd

s
/s

e
c
)

#Threads

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
Scale-OIJ (w/o incremental)

Key-OIJ
SplitJoin

(b) Latency

Fig. 21: Synthetic Workload

does not improve the performance much. SplitJoin
achieves a similar throughput as Key-OIJ as they both suffer
from the high cost of full table scan, especially when the
out-of-window data is large. For Workload D, whose arrival
rate is limited, Scale-OIJ can deliver lower latency than
Key-OIJ and SplitJoin, with a similar throughput as

 10

 100

 1000

A B C D

T
h

ro
u

g
h

p
u

t
(K

 r
e

c
o

rd
s
/s

e
c
)

Workload

Scale-OIJ
OpenMLDB

Fig. 22: Comparison with OpenMLDB (Throughput)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
OpenMLDB

(a) Workload A

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
OpenMLDB

(b) Workload B

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
OpenMLDB

(c) Workload C

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
D

F
 (

%
)

Latency (ms)

Scale-OIJ
OpenMLDB

(d) Workload D

Fig. 23: Comparison with OpenMLDB (Latency)

shown in Figure 20.
We conduct another experiment with a synthetic workload

to demonstrate the limitations of Scale-OIJ , as shown in
Figure 21. The specification of this workload is shown in
Table V, where the window w and lateness l is relatively
small while the key number u is relatively large. In this
workload, Key-OIJ performs the best as a large key number
eliminates the skew in key distribution, resulting in balanced
processing of all joiners. Small window partially negates
the benefit from incremental processing as there is less
overlapping between neighbour windows. Small lateness voids
the time-travel data structure as most of the data is within
the window and order does not speed up the processing.
Interestingly, the performance of SplitJoin degrades after
large threads, which is mainly because the overhead caused
by tuple broadcasting over-kills the benefits brought by the
balanced processing, and the small window setting deteriorates
the problem as the computing is becoming even less than the
data copying with large threads.

E. Comparison with OpenMLDB

In this section, we compare Scale-OIJ with OpenMLDB
using the four real-world workloads. As OpenMLDB cannot
handle the out-of-order cases, we remove the accuracy
checking in OpenMLDB, thus eliminating the effect of
lateness intentionally. Figure 22 and Figure 23 demonstrate

TABLE V: Specification of Synthetic Workload

Parameter Value
Key Number u 1000
Window Size |w| 100 us
Lateness l 10 us

the throughput and latency results, respectively. For low-
arrival-rate workloads (i.e., Workload D), OpenMLDB
performs relatively well, even delivering lower latency than
Scale-OIJ . However, OpenMLDB is not designed for
streaming scenarios where the data arrival rate is high. In
all other three workloads, Scale-OIJ is far better than
OpenMLDB. Especially, it outperforms OpenMLDB by 8×
and 7× when handling Workload B and C, respectively. For
Workload B, the performance boost is mainly attributed to the
incremental computing technique by Scale-OIJ , reducing
the cost significantly of doing aggregation over the large
window. For Workload C where the arrival rate is high,
OpenMLDB cannot handle gracefully as the data insertions
are often blocking. As we can see, OpenMLDB, which is even
highly tuned for online feature computing, is still not able to
handle streaming data at high arrival rate, as the assumption of
read-intensive workload is no longer true for streaming data,
and there is no effective mechanism to solve the out-of-order
arrivals.

VI. RELATED WORK

Works related to our approach can be broadly classified as
follows: offline interval join and parallel online join.

Offline Interval Join. Interval-based join are popular in
temporal databases, where each tuple has left and right
endpoints representing an interval. Piatov et al. [13] proposed
a gapless hash map to maintain the active candidate tuple set
for cache efficiency and introduced lazy processing to reduce
the repeated data scan. Dignös et al. [7] proposed Overlap
Interval Partitioning to efficiently compute the interval join
with a constant guarantee on the duration difference between
tuple and its partition, and analytically derived the number
of partitions k to balance the partition accesses and false
hits. Chawda et al. [6] optimized the interval join in the
MapReduce framework, and Bouros et al [5] proposed the
forward scan method to conduct interval join, eliminating the
costly maintenance of data structures like [13]. However, the
"interval join" in their contexts is basically a relational join
with a predicate checking that tuple intervals overlap, which
has a different semantics from our OIJ . In addition, all their
approaches require a total ordering by fully sorting, which
cannot be achieved in the data streams where the tuples are
continuously arriving and cleared.

Parallel Online Join. Online or stream join has received
considerable attention in recent years due to its computational
complexity and importance in various data management
applications [20], [21]. To name a few, Gedik et al. [8]
proposed the Cell join to exploit the computing power of
the cell processor, which is the first work on parallelizing
online join on modern hardware. Handshake join [17] and its
low-latency improvement [14] propagate stream tuples along a

linear chain of cores in opposite directions to achieve scalable
stream join. SplitJoin [12] achieves scalability in a different
way. A top-down data flow model that splits the join operation
into an independent store and process steps is introduced
to reduce the dependency among processing units. Shahvarani
et al. [15] addressed the challenge of index updating during
window join by a partitioned in-memory merge-tree, which
is shared among different threads for concurrent processing.
However, unlike interval join, their window boundaries are
‘absolute’, irrelevant to the timestamp of each tuple in the
input data streams. In contrast, the window boundaries of
interval join are ‘relative’ to the timestamps of current tuples,
making it non-trivial to partition the data based on the window.

VII. CONCLUSION AND FUTURE WORKS

This paper explores how to achieve scalable online interval
join on modern multicores in OpenMLDB. We conduct
detailed experimental studies with real-world and synthetic
datasets on the only existing OIJ solution Key-OIJ [4].
Our results show that Key-OIJ leads to poor performance
in three key aspects: 1) costly manipulation of out-of-
order data; 2) unbalanced workload scheduling; 3) redundant
computation of overlapping windows. We further propose a
new approach called Scale-OIJ with 1) SWMR Time-
Travel Data Structure, 2) Dynamic Balanced Schedule, and
3) Incremental Window Aggregation, to address each of
the aforementioned poor designs. Our evaluation shows
Scale-OIJ outperforms Key-OIJ by up to 24× higher
throughput and 99% lower latency, and improves the current
version of OpenMLDB by up to 8× higher throughput and
90% lower latency. It also performs better than the approach
adapted from traditional stream joins (e.g., SplitJoin [12])
by up to 20× in terms of throughput. Scale-OIJ has been
partially integrated into OpenMLDB 6.

Streaming data at a high arrival rate is becoming common
in online services [10], and hard real-time (e.g., 20 ms)
of feature computing is often required in OLDA. However,
traditional databases, even in-memory databases specifically
optimized for speed like OpenMLDB, are not able to meet the
requirements due to the streaming characteristics (e.g., high
arrival rate, out-of-order arrival). Our proposal in this paper is
an attempt towards making OpenMLDB able to handle high-
rate data streams, focusing on the most common operator in
machine learning databases - OIJ . There are many interesting
open questions to further explore including but not limited to,
NUMA-aware dynamic scheduling, tunable accuracy without
prior knowledge (i.e., lateness), cache-conscious structures
and scheduling strategies, prediction model for online data
distribution, and incremental computing for non-invertible
operators, which are not fully considered in this paper.

ACKNOWLEDGEMENT

Shuhao Zhang’s work is partially supported by a SUTD
Start-up Research Grant (SRT3IS21164).

6https://github.com/4paradigm/OpenMLDB/tree/stream

REFERENCES

[1] A benchmark for real-time relational data feature extraction. https://
github.com/decis-bench/febench. Last Accessed: 2023-01-03.

[2] Openmldb use cases. https://openmldb.ai/docs/en/main/use_case/index.
html. Last Accessed: 2022-09-23.

[3] Real-time-experiment-analytics-at-pinterest-using-
apache-flink, https://medium.com/pinterest-engineering/
real-time-experiment-analytics-at-pinterest-using-apache-flink-841c8df98dc2.
Last Accessed: 2020-11-23.

[4] Interval join in apache flink , https://ci.apache.org/projects/flink/
flink-docs-stable/dev/stream/operators/joining.html, 2018. Last
Accessed: 2020-09-17.

[5] P. Bouros and N. Mamoulis. A forward scan based plane sweep
algorithm for parallel interval joins. Proceedings of the VLDB
Endowment, 10(11):1346–1357, 2017.

[6] B. Chawda, H. Gupta, S. Negi, T. A. Faruquie, L. V. Subramaniam, and
M. K. Mohania. Processing interval joins on map-reduce. In EDBT,
pages 463–474, 2014.

[7] A. Dignös, M. H. Böhlen, and J. Gamper. Overlap interval partition join.
In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, pages 1459–1470, 2014.

[8] B. Gedik, R. R. Bordawekar, and P. S. Yu. Celljoin: a parallel stream
join operator for the cell processor. The VLDB journal, 18(2):501–519,
2009.

[9] Y. Ji, J. Sun, A. Nica, Z. Jerzak, G. Hackenbroich, and C. Fetzer.
Quality-driven disorder handling for m-way sliding window stream joins.
In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pages 493–504, 2016.

[10] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl. Benchmarking distributed stream data processing systems. In
2018 IEEE 34th International Conference on Data Engineering (ICDE),
pages 1507–1518, 2018.

[11] S. J.-D. Lovelock, J. Hare, A. Woodward, and A. Priestley. Forecast:
The business value of artificial intelligence, worldwide, 2017-2025.
Gartner.(ID G00348137), 2018.

[12] M. Najafi, M. Sadoghi, and H.-A. Jacobsen. Splitjoin: A scalable, low-
latency stream join architecture with adjustable ordering precision. In
ATC, pages 493–505, Denver, CO, June 2016. USENIX Association.

[13] D. Piatov, S. Helmer, and A. Dignös. An interval join optimized for
modern hardware. In 2016 IEEE 32nd International Conference on
Data Engineering (ICDE), pages 1098–1109. IEEE, 2016.

[14] P. Roy, J. Teubner, and R. Gemulla. Low-latency handshake join.
Proceedings of the VLDB Endowment, 7(9):709–720, 2014.

[15] A. Shahvarani and H.-A. Jacobsen. Parallel index-based stream join on
a multicore cpu. In Proc. SIGMOD, SIGMOD ’20, page 2523–2537,
New York, NY, USA, 2020. Association for Computing Machinery.

[16] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-latency sliding-
window aggregation in worst-case constant time. In Proceedings of
the 11th ACM International Conference on Distributed and Event-
Based Systems, DEBS ’17, page 66–77, New York, NY, USA, 2017.
Association for Computing Machinery.

[17] J. Teubner and R. Mueller. How soccer players would do stream joins.
In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 625–636, 2011.

[18] S. Wang, J. Li, M. Lu, Z. Zheng, Y. Chen, and B. He. A system for
time series feature extraction in federated learning. In Proceedings of
the 31st ACM International Conference on Information & Knowledge
Management, CIKM ’22, page 5024–5028, New York, NY, USA, 2022.
Association for Computing Machinery.

[19] C. Zhang, R. Akbarinia, and F. Toumani. Efficient incremental
computation of aggregations over sliding windows. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD ’21, page 2136–2144, New York, NY, USA, 2021.
Association for Computing Machinery.

[20] S. Zhang, Y. Mao, J. He, P. M. Grulich, S. Zeuch, B. He, R. T. B.
Ma, and V. Markl. Parallelizing intra-window join on multicores: An
experimental study. In Proceedings of the 2021 International Conference
on Management of Data, SIGMOD ’21, page 2089–2101, New York,
NY, USA, 2021. Association for Computing Machinery.

[21] S. Zhang, F. Zhang, Y. Wu, B. He, and P. Johns. Hardware-conscious
stream processing: A survey. SIGMOD Rec., 48(4):18–29, Feb. 2020.

https://github.com/decis-bench/febench
https://github.com/decis-bench/febench
https://openmldb.ai/docs/en/main/use_case/index.html
https://openmldb.ai/docs/en/main/use_case/index.html
https://medium.com/pinterest-engineering/real-time-experiment-analytics-at-pinterest-using-apache-flink-841c8df98dc2
https://medium.com/pinterest-engineering/real-time-experiment-analytics-at-pinterest-using-apache-flink-841c8df98dc2
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/joining.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/joining.html

	Introduction
	Preliminaries
	OpenMLDB
	Window-based Stream Processing
	Parallel Online Interval Join

	Methodology
	Research Goals
	Performance Metrics
	Benchmark Workloads
	System Specification

	The Pitfalls of Existing Solutions
	Overall Evaluation Results
	Workload Sensitivity Study

	Optimized Design of Interval Join
	Time-Travel Data Structure
	Ordered Indexing
	SWMR Concurrency Property

	Dynamic Schedule
	Shared Processing
	Dynamic Schedule

	Incremental Online Interval Join
	Experimental Results
	Comparison with OpenMLDB

	Related Work
	Conclusion And Future Works
	References

