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Abstract
Data stream compression has attracted vast interest in
emerging IoT (Internet of Things) applications. However,
adopting stream compression on IoT applications is
non-trivial due to the divergent demands, i.e., low
energy consumption, high throughput, low latency, high
compressibility, and tolerable information loss, which
sometimes conflict with each other. This is particularly
challenging when adopting stateful stream compression
algorithms, which rely on states, e.g., a dictionary or
model. This paper presents our vision of CStream, a
hardware-conscious stateful stream compression framework
for IoT applications. Through careful hardware-conscious
optimizations, CStream will minimize energy consumption
while striving to satisfy the divergent performance demands
for parallelizing complex stateful stream compression
algorithms for IoT applications.

CCS Concepts: • Streams and complex event processing
→ Stateful Stream Compression; • Emerging hardware
→ IoT devices.
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1 Introduction
Data stream compression, i.e., continuously compressing
input data tuples, attracts much attention recently [5, 8],
especially due to the rise of IoT applications. Figure 1
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Figure 1. Stream compression may be applied during real-
time data gathering by the patrol drone where humans can
not enter.

demonstrates an IoT use case [21] where stream compression
is highly attractive to be adopted. In this application, real-
time data streams (e.g., toxic gas, temperature) from massive
IoT sensors, deployed in dangerous areas, are continuously
gathered by memory-limited, battery-powered patrol drones
(i.e., IoT devices). To reduce transmission overhead, the
drone may compress input streams by its equipped multicore
processors [21] before passing them to downstream online
IoT analytic tasks, such as online aggregation [8], and online
machine learning [7] in the cloud.
Parallelizing stream compression on IoT devices, such

as the wireless patrol drone in Figure 1, is mandatory
to meet the strict high-throughput and low-latency
processing requirement. However, it is a non-trivial
task as it involves divergent, sometimes conflicting,
additional demands including low energy consumption [22],
high compression ratio [7], and tolerable information
lose [5]. It is particularly challenging when stream
compression itself relies on states, i.e., the intermediate
value that will be used in subsequent operations during
the compressing of data streams (Def 2). Some typical
forms of states during stateful stream compression include
dictionary [15] and model [4]. Those stateful stream
compression algorithms are gaining increasing traction
nowadays, as they significantly outperform stateless
algorithms in terms of compressibility and information loss
control [1, 5, 11]. Unfortunately, managing states bring even
more difficulties for parallelization [15].
Recent efforts have been devoted to 1) conducting data

compression on IoT devices [16] and 2) continuously
compressing data streams [5, 8]. For example, a recent
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IoT-aware database Vergedb [16] proposes to automatically
select the compression approach, given the workload, data
arrival rates, and resource capacity. However, existing
frameworks such as Vergedb are limited to relying on a
coarse-grained analysis of performance tradeoffs among
data compression algorithms. They fail to fully explore
a large software-hardware codesign space and do not
intrinsically support state management for complex
stateful stream compression algorithms. To the best
of our knowledge, none of them answers the question:
How to best parallelize stateful stream compression on IoT
devices under energy budget constraints?
Motivating Evaluation Results. Figure 2 illustrates

a large feasible solution space for parallelizing a stateful
stream compression algorithm on a modern multicore IoT
device, where the state is a piecewise linear approximation
(PLA) model [4]. There are three major takeaways. First,
various concurrency control mechanisms for accessing the
states during stream compression lead to a large design
space. For example, the solution 𝐴 configures all threads
to maintain a global-shared PLA model, and it achieves a
high compression ratio of 8.5. In contrast, solution 𝐵 achieves
higher throughput by using a shared-nothing approach [15],
where each thread maintains a disjoint PLA model, but the
compression ratio drops to 6.2. Second, hardware-conscious
optimization is necessary.We highlight a hardware-oblivious
solution 𝐶 , which has a simple lock-based concurrency
control, OS-based workload scheduling, and random input
stream admission. Compared with a hardware-conscious
solution such as 𝐴, 𝐶 wasted more than 6.9× energy
consumption while achieving about 1.5× higher latency
and 80.5% lower throughput. Third, there is a complex
non-linear correlation between energy consumption and
other performance demands. As a result, adapting a solution
to another to cope with the changes in workloads and
performance demands is necessary but challenging. For
example, it can achieve about 10× higher throughput and
1/40 lower latency by consuming 8× more energy without
losing compressibility comparing solution point 𝐷 (a single-
thread implementation) to 𝐴 (a parallel implementation).
In this paper, we describe our vision of a hardware-

conscious stateful stream compression framework for IoT
applications, namely CStream. Differing significantly from
prior works, CStream aims to hit the sweet spot among the
divergent performance demands when parallelizing stateful
stream compression on multicore IoT devices. CStream will
achieve the goal via three key designs, centering around
built-in support of state management, hardware-conscious
optimizations, and adaptive to dynamic IoT environment:
• First, we introduce a compression procedure compilation
module (Section 4.1) that parallelizes a given stream
compression procedure (Def 1) into a parallel execution
plan as a Directed Acyclic Graph (DAG) [23, 24] with
suitable state representations.
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Figure 2. The large feasible solution space of applying
piecewise linear approximation (PLA) [4] under relative
error bound 0.01 to compress ECG [21] data on RK3399 [21]
asymmetric multicores as the IoT device. The definition of
compression ratio follows [5], and the higher means the
better.

• Second, we propose a parallel stateful runtime
(Section 4.2) with efficient concurrency control of
shared state access and hardware-conscious scheduling
mechanisms.

• Third, we design an adaptive control plane (Section 4.3)
that manages the input stream admission and
runtime adjusting to cope with the dynamicity of IoT
environments.
Our early experiments have revealed that CStream is able

to obtain satisfying solutions such as 𝐴 and 𝐵 as shown in
Figure 2 to meet divergent performance demands. Given
the encouraging results, we envision that CStream can be
a key component of the next-generation large-scale IoT
deployment [2, 6, 22], especially, since it also aligns with
the recent initiative of green computing.

2 Related Work
This section reviews the related work and reveals the
limitations that motivate CStream.
Stateful Data Compression Algorithms. There is a

growing interest in exploring complex stateful compression
algorithms for emerging IoT applications. For instance, the
dictionary-based states such as LZMA [9] and model-based
states like piecewise linear approximation (PLA) [1, 4] are
attractive in compressing dynamic vision and achieving
error-bounded lossy compression over time series data.
Recent work from Li et al [11] also exploits the summarizing-
based state during data compression for machine learning.
These studies provide valuable insights into utilizing the
state in different cases of data compression. CStream is
broader than their scope, as we exploit hardware-conscious
parallelization of stateful stream compression on multicore
IoT devices.
Parallelizing Data Compression. Prior work has

attempted parallelizing data compression using various
hardware architectures such as CPU [5], GPU [15] and
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FPGA [8]. Especially, recent work such as Tersecades[5]
and StreamZip [8] have explored how to accelerate the
stream processing operations (i.e., join and aggregation,
respectively) by compressing data streams on parallel
architectures. They achieve satisfying scaling up on
compression, but none of them is designed for multicore IoT
devices with a constrained energy budget. Further, they lack
intrinsic support of state management for complex stateful
stream compression algorithms.
Utilizing Novel IoT Hardware. A growing interest

has been shown in utilizing asymmetric (e.g., the
ARM big. LITTLE processors [13]) and heterogeneous
multicore devices (e.g., the coupled CPU-GPU [20]) in
IoT, as they can achieve a better trade-off between
energy efficiency and other performance demands like
throughput compared with symmetric architectures. Recent
studies are especially interested in exploring collaborative
OS schedulers and energy-efficient machine learning
on asymmetric multicore [19] or coupled CPU-GPU
architectures [20]. They make valuable contributions to
understanding the novel hardware and conducting hardware-
conscious workload scheduling, but none investigated the
large design space of parallel stateful stream compression
on multicore IoT devices.

3 System Overview
In this section, we first outline how CStreamworks, followed
by its key design challenges, and a design overview.

3.1 How CStream Works?
As shown in Figure 3, acting as a compression middleware,
CStream sits between IoT devices such as sensors and
downstream online analytic tasks. To meet various
performance demands CStream parallelizes a stream
compression procedure, defined as follows.

Definition 1 (Stream Compression Procedure). A stream
compression procedure is the process of applying a specific
stream compression algorithm to compress a subset of the input
data stream under specific demands of energy consumption,
throughput, latency, compressibility, and information loss.

CStream especially targets parallelizing stateful stream
compression procedures that maintain various kinds of
states to help achieve higher compressibility and/or lower
information loss, where the state can be defined as follows.

Definition 2 (State). A state in stream compression is
the intermediate value or data structure that maintains or
approximates historic information of the input data stream
to help the algorithm to better determine and apply the
compression strategies for subsequent data streams.

3.2 Design Challenges
CStream needs to address the following three challenges.

The Challenge of Efficient State Management.
Achieving effective parallelization over various compression
algorithms is difficult [15], especially when the algorithm
is stateful [24]. In practice, various kinds of states may
be involved in compression, e.g., the last-encountered
value [5], the dictionary [15], the sketch structure [11],
and the piecewise linear approximation model [1]. Differ
significantly from prior work, CStream treats efficient state
management as a first-class citizen for better managing those
states during stream compression.

The Challenge of Hardware Conscious Optimization.
Achieving hardware consciousness parallelization of stream
compression is non-trivial [22]. Especially, CStream needs
to make wise decisions in a) the selection of concurrency
control [24] of state access among multiple parallel
instances, and b) the proper workload scheduling on novel
IoT devices, which are typically asymmetric [13] and/or
heterogeneous [20].

The Challenge of Dynamicity in IoT Environment.
Fitting into the dynamics and uncertainty on the fly in a
real-world IoT environment [2, 3] introduces another non-
trivial design challenge to CStream. In particular, both the
admission of infinite, potentially out-of-order data stream
and the parallel runtime should be reconfigurable and
adaptive to dynamically changing workloads.

3.3 Design Overview
To address the aforementioned challenges, CStream consists
of three major components, i.e., a compression procedure
compilation, a parallel stateful runtime, and an adaptive
control plane, as shown in Figure 3.

CStream takes three consecutive steps to conduct a given
procedure. 1 In the compression procedure compilation, a
selected compression algorithm is compiled into a parallel
execution plan, which is represented as a DAG with multiple
nodes. The compilation exploits both pipelining parallelism
and data parallelism. Treating the state management as a
first-class citizen, CStream supports five state-of-art major
representations of states during the compilation. 2 The
DAG is then sent to the parallel stateful runtime for
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execution. There is a notorious problem of concurrent state
access [3, 10, 24] during stateful stream processing. For
CStream, its runtime must decide suitable concurrency
control approaches in order to achieve a good balance
between compressibility and accessing overhead. Afterward,
each running node of the DAG is scheduled with hardware
consciousness, by being assigned 1) the right mapping
place of hardware and 2) the right portion of the workload
according to the procedure demands. 3 An adaptive
control plane is responsible for addressing the dynamicity.
Specifically, it regulates the input stream admission in
an efficient manner with micro batcing and out-of-order
stream handling [23]. It also chooses the optimal way of
adjusting the runtime, in terms of both computational power
and software configurations [3]. The adjustments cover
the necessary guarantee of state consistency, and they are
specially optimized for the long-running online IoT analytics
and the dynamic IoT data stream [3].

4 CStream Components
In this section, we elaborate on the crucial design of CStream
in more detail and discuss some of our ongoing works.

4.1 Compression Procedure Compilation
We first introduce how CStream compiles the stream
compression procedure into a DAG.

4.1.1 Forms of State. CStream supports five major forms
of compression state which are popularly used in stream
compression algorithms as follows. (1) Stateless compression,
which repeats the compression on the current data without
backtracing historical information [18]. (2) Value-based
State, which is about updating and recording the recent
compressed value to improve the compression ratio, such
as delta encoding [5] and run length encoding (RLE) [18].
(3) Dictionary-based State, which utilizes a dictionary such
as hash table [9] to memorize thousands of encountered
“last compressed” values, further improving compressibility
with higher maintenance overhead. (4) Model-based State,
which reflects large volumes of data by using approximate
mathematical models (e.g., under linear or logistic regression)
with only a few parameters [4], achieving ultra-high
compression ratio [1] when data is highly fitted to the
model. (5) Summarizing-based State, which aims to acquire
an approximate summary of historic information in several
incrementally updated buckets or cells [7] instead of
keeping accurate records, enabling tunable trade-off between
compressibility and information loss.

4.1.2 DAG Generator. Based on the state representation,
the DAG generator is then involved to exploit both
pipelining parallelism and data parallelism opportunities
for compilation inspired by [21, 23]. To achieve pipelining
parallelism, CStream divides a stream compression
procedure into three pipeline steps of 𝑟𝑒𝑎𝑑 , 𝑒𝑛𝑐𝑜𝑑𝑒 , and

𝑤𝑟𝑖𝑡𝑒 , and further divide 𝑒𝑛𝑐𝑜𝑑𝑒 step into three state-related
steps [24], i.e., 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑠𝑡𝑎𝑡𝑒 𝑎𝑐𝑐𝑒𝑠𝑠 , and 𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 .
For data parallelism, each aforementioned pipeline step
can be replicated for providing higher performance and
relieve pipeline bottlenecks [23]. However, achieving data
parallelism is not always straightforward as concurrent
accesses over a compression state may be involved. It
is particularly challenging as CStream needs to support
multiple forms of states (Section 4.1.1). We discuss how
CStream addresses this issue by concurrency control in the
following (Section 4.2.1).

4.2 Parallel Stateful Runtime
We discuss how CStream conducts the parallel execution of
stream compression DAG and achieves hardware-conscious.

4.2.1 Concurrency Control. We focus on single-node
shared-memory multicore IoT devices and illustrate all
possible concurrency control approaches as follows. 1)
The Shared-Nothing Approach: Conducting parallel stream
compression without sharing states is a natural choice for
maximizing parallelism [15]. However, splitting the state will
lose compressibility as a parallel instance is unaware of the
historical information about the data stream maintained by
others. 2) The Partial-Share Approach: To alleviate the loss
of compressibility caused by the nothing-share approach,
the state can be partially shared, e.g., to share the state
among some neighbours [17]. Partial sharing is an attractive
strategy [14], but questions such as 1) which states to share
and 2) how to conduct the partial sharing remain to be
answered for parallelizing stateful stream compression. We
are currently working on a holistic model to determine the
optimal configuration for the partial-sharing of states during
stateful stream compression in CStream. 3) The Global-Share
Approach: It is also possible to maintain a global shared
state while still providing parallelism by taking advantage
of state-of-art technologies like concurrent storage [10]
or transactional stream processing [24]. However, how to
apply these technologies in stateful stream compression
on ubiquitous IoT device is still an open question. On
the one hand, the relatively strong ACID guarantee [24]
may not be a necessity, as long as the information loss
in ending compressed data is acceptable. On the other
hand, global sharing is typically not preferable when there
is heterogeneity, e.g., CPU+GPU [15], due to its huge
implementation complexity.

4.2.2 The Hardware-Conscious Scheduling. Many
prior works have revealed the benefits of adopting
asymmetric and heterogeneous multicores [13, 20] on IoT
devices. In general, they are superior to traditional symmetric
hardware in higher performance and higher energy
efficiency. However, it is non-trivial to fully take advantage
of them in CStream, due to the so-called asymmetric
computation and asymmetric communication effects [19, 21].
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A recent work [21] points out that precise and low-overhead
cost modeling is required to guide the hardware-conscious
scheduling in stream compression, but it still remains an
open challenge as stateful stream compression algorithms,
IoT hardware, and dynamic workload should be considered
together in an adaptive and cost-effective manner. We are
working on more sophisticated controllers that monitor
workload statistical information in the data stream [23] to
better guide the hardware-conscious scheduling.

4.3 Adaptive Control Plane
To address the dynamicity issue in IoT environments,
CStream involves an adaptive control plane of input stream
admission and runtime adjusting.

4.3.1 Input Stream Admission. We first discuss how
CStream admits input stream including the execution over
infinite streaming data and the out-of-order handling in a
real-world IoT environment.

Micro-batch Execution.Compressing the data stream pieces
as soon as their arrival seems a natural fit for handling
infinite streaming inputs. However, such an eager approach
is costly. Inspired by [25], CStream adapts themicro-batching
strategy and conducts stream compression lazily. One
subsequent question arises as “how much data should be
agglomerated in each micro-batching”. Our preliminary
results indicate that a suitable batch size correlates to cache
size, especially the L1D size. However, conflicts among
different performance demands occur in tuning the batch
size, e.g., a larger batch size may be beneficial to improve
throughput, but also increases the latency.
Out-of-Order Handling. The out-of-order (OoO) arrival

of the data stream is another notorious problem [23],
especially for IoT applications [22]. OoO handling such
as watermark mechanisms involves an inevitable tradeoff
between quality and latency, as it is well studied in general
stream processing [23]. However, it has not been applied to
compression-specific optimizations that our work targets.
Therefore, we are investigating the following literature
gaps 1) the definition of compression quality should cover
both compression ratio and information loss and will
act as the criteria to guide a tradeoff, 2) the heuristic
optimization among parallel stream compression algorithms
and OoO handling, which enables proactive improvement in
compression quality and leads to optimal tradeoffs.

4.3.2 Runtime Adjusting. We now introduce how
CStream adjusts its runtime under the dynamics.
Adjusting Computational Power. CStream provides

necessary computational power on demand without wasting
energy due to the limited energy budget on IoT devices, and
adjusts the computational power as follows: (1) Frequency
regulation trades off time and energy without requiring other
settings to change [3], and it’s often conducted under the
dynamic voltage and frequency scaling (DVFS) technology.

However, due to the obliviousness of performance demands
by stream compression and coarse-grained guarantee [19]
of OS-provided DVFS, we are working on evaluating
and adopting some state-of-art DVFS [19] in CStream
framework. (2) Core number regulation offers a large
tuning space of time-energy trading off but leads to high
complexity [3]. Specifically, we should merge or split some
data parallelism nodes and remap some existing nodes in the
DAG to fit into the changed core number[23]. Meanwhile,
specific reconfiguration protocols must be used to preserve
stream and internal state integrity [3].
Adjusting Software Configurations. The streaming

workloads in the IoT environment vary significantly in both
arrival patterns and statistical properties over time [22].
Static profiling and fixed strategies are insufficient, we are
investigating how to achieve the adaptive configuration of
CStream (e.g., workload scheduling, input stream admission,
etc). Moving beyond a recent feedback-based control [21],
CStream will enable (1) adaptive input stream admissions
such as configuring the optimal batch size [3] and generating
the optimal watermark [23, 24] on the fly and (2) utilizing
more powerful approaches such as proactive-model [23]
and machine-learning [3].

5 Preliminary Evaluation
CStream supports all aforementioned concurrency control
approaches (Section 4.2.1) for state management in stream
compression. Specifically, we follow a prior work [15] to
implement the shared nothing approach (NS), enable each
thread to have state read access on its two nearest neighbors
to implement the partial-share approach (PS), and implement
global-share approach by either lock-based implementation
(LOCK) and transactional-based [24] implementation (TP).
We use RK3399 asymmetric multicores as the IoT device [21]
for PLA compression [4] on an ECG dataset [21]. We use “B”
to denote big cores and “L” to denote little cores on RK3399,
and enable all cores by default, i.e., “2B4L”. Unless otherwise
specified we let each core work under its highest frequency,
i.e., 1.416𝐺𝐻𝑧 for B and 1.8𝐺𝐻𝑧 for L. We use a 2𝐾 byte as
batch size for micro batching and use an asymmetry-aware
scheduling strategy.
Figure 4 shows the comparison of different concurrency

control implementations. There are three major observations.
First, although the NS approach leads to minimal energy
consumption, its compressibility is the lowest (i.e., up to
24% less compression ratio compared with LOCK or TP).
Even worse, the compression ratio drops with an increasing
number of cores, as shown in Figure 4(b). Second, LOCK
brings much higher energy consumption, i.e., 4.6× more
energy consumption than NS, although it can guarantee the
highest compression ratio. Compared with LOCK, the novel
TP implementation avoids the centralized lock contentions
while still allowing the global sharing of states. Third, there
is an interesting space for trading off compressibility and
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overhead between PS and TP (i.e., 7.7 ∼ 8.5 compression
ratio, 1.6 ∼ 2.0 𝐽/𝑀𝐵 energy consumption), and we plan to
further investigate it in the future.
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Figure 5. Preliminary results about adjusting the runtime.

Figure 5 further shows that CStream can adjust runtime
by setting different core frequencies and numbers of cores.
Noting that the relationship between energy consumption
and frequency can be non-monotonic. We observed that this
is because the energy consumption decreases or increases
with increasing frequency in the little core or big core,
respectively. These results highlight that a more careful
design is required in achieving varying demands in dynamic
workloads in CStream.

6 Conclusion and Future Work
With the increasing deployment of massive IoT devices,
continuously reducing data footprints between data sources
and downstream IoT analytics becomes crucial. Subsequently,
there is a growing interest in adopting stream compression
for IoT, especially for stateful stream compression which
has great potential and emerging applications. However,
such adoption needs to carefully take multiple performance
demands into account when realizing stream compression
algorithms with complex state management on energy
budget-constrained IoT devices. We presented our vision
of CStream to bridge the literature gap hopefully.

Beyond compressing data streams to reduce transmission
overhead, it becomes evenmore beneficial when downstream
tasks execute directly over compressed streams [26]. It is
therefore an interesting next step to utilize CStream as a
runtime enhancement to reduce memory footprints during
stream processing in other related frameworks, such as
Driven [6], NebulaStream [22], and MorphStream [12].
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