
Noname manuscript No.
(will be inserted by the editor)

A Survey on Transactional Stream Processing

Shuhao Zhang · Juan Soto · Volker Markl

Received: date / Accepted: date

Abstract Transactional stream processing (TSP) strives to
create a cohesive model that merges the advantages of
both transactional and stream-oriented guarantees. Over
the past decade, numerous endeavors have contributed to
the evolution of TSP solutions, uncovering similarities
and distinctions among them. Despite these advances,
a universally accepted standard approach for integrating
transactional functionality with stream processing remains
to be established. Existing TSP solutions predominantly
concentrate on specific application characteristics and
involve complex design trade-offs. This survey intends
to introduce TSP and present our perspective on its
future progression. Our primary goals are twofold: to
provide insights into the diverse TSP requirements and
methodologies, and to inspire the design and development
of groundbreaking TSP systems.

Keywords Transactions · Stream Processing · Survey

1 Introduction

Stream processing, originating in the late 1990s and early
2000s with publish-subscribe systems and data stream
management systems (DSMS) [13], has become vital for
real-time data handling. Various frameworks like Apache
Storm, Apache Flink, and Apache Kafka Streams, each with

� Shuhao Zhang
Singapore University of Technology and Design, Singapore
E-mail: shuhao zhang@sutd.edu.sg

Juan Soto
Technische Universität Berlin, Germany
E-mail: juan.soto@tu-berlin.de

Volker Markl
Technische Universität Berlin, Germany
E-mail: volker.markl@tu-berlin.de

unique features, have been developed. The integration of
relational queries with continuous stream processing has
been explored since the first-generation stream processing
engine (SPE) [38]. However, modern SPEs often lack the
capability to maintain or query relational tables consistently
during processing [5, 12, 50]. This leads to two key
limitations: the absence of transactional guarantees and
inconsistency across distributed systems [54].

Transactional Stream Processing (TSP) systems have
emerged as a solution, blending real-time data stream
management with ACID (Atomicity, Consistency, Isolation,
Durability) guarantees [3, 7, 10, 19, 33, 40, 53, 76]. Unlike
traditional databases, in TSP systems, transactions initiate
via streaming events and can be triggered individually or in
batches. To qualify as a TSP system, two core criteria must
be met: 1) real-time data processing through immediate
handling of discrete data tuples, thus negating the need
for batch processing or extensive data storage; and 2)
robust transactional integrity assured by ACID properties.
Transactions in this context may alter the system’s internal
stateincluding data aggregates, intermediate results, or
configurationsand potentially initiate external notifications
or other side-effects. Moreover, TSP systems provide
interfaces that accommodate both continuous and relational
queries, enabling versatile client interactions.

Integrating streaming and transactional
capabilities introduces a unique set of challenges,
resultingin varied design and implementation
approaches [6, 19, 30, 37, 41, 60, 88]. These variations
typically stem from application-specific requirements.
TSPsystems use streaming mechanisms to maintain up-
to-date system states and offer real-time shared table
views. Transactional features, on the other hand, ensure the
consistent maintenance of these states and views.

The absence of standardized transaction models or
query languages complicates the design of TSP interfaces



2 Shuhao Zhang et al.

Votes

Contestants

LeaderBoards
Ordering needed

ACID needed

Voting Stream
Validate Vote 
Record Vote

Validate Vote 
Record Vote

Update
LeaderBoards

Update
LeaderBoards

Remove Lowest
Contestants &

Votes

Remove Lowest
Contestants &

Votes

Fig. 1: Leaderboard Maintenance (LM ) [54].

and APIs. This lack of uniformity introduces a range of
approaches, making it challenging to establish consistent
terminology and feature sets across the field. Our
survey aims to illuminate these variations and identify
common threads. In TSP systems, query languages
must support both continuous streams and transactional
operations. The system’s internal state is influenced not
only by incoming streams but can also be altered via
explicit insert/update queries. This dual approach to state
management adds complexity yet offers flexibility, allowing
diverse transactional properties based on interaction
modalities with the system.

1.1 Example Use Cases

We present two scenarios illustrating the value and necessity
of Transactional Stream Processing (TSP), with further
application scenarios detailed in Section 5.

Leaderboard Maintenance: Described by Meehan et
al. [54], this use case pertains to real-time leaderboard
updates during a TV voting show like American Idol
(Figure 1). Viewers vote for contestants, and the system
must instantly and accurately rank them. The challenge
includes maintaining different leaderboards (top-3, bottom-
3, top-3 trending) and continuously updating them. Key
requirements include ACID guarantees for validating and
recording votes in a shared table, Votes, and ordering
guarantees to tally votes sequentially.

Streaming Ledger: Proposed by dataArtisans [3], the
Streaming Ledger (SL) (Figure 2) involves two types of
requests accessing shared mutable states for fund transfers
and deposits. The aim is to process a stream of these
requests and output the results. To handle a large volume
of concurrent requests ACID guarantees and ordering
guarantees are necessary. For instance, transfers may be
rolled back if they violate data integrity, such as causing
a negative account balance. Additionally, the system may
need to process requests in temporal order by timestamp.

Modern SPEs and databases are inadequate for the
described use cases. SPEs’ restriction to disjoint state
subsets [24] breaches transactional consistency for multi-
key input tuples. Conversely, databases are ill-equipped for

Transfer/Deposit
Event Stream Source Streaming 

Ledger Sink

AccID Balance
Account Table

AstID AstValue
Asset Table

ACID & Ordering
needed

Fig. 2: Streaming Ledger (SL) [3].

high-velocity input streams. TSP uniquely unifies ACID
guarantees and stream processing.

1.2 Scope

This survey offers a comprehensive examination of TSP,
encompassing the key challenges, design trade-offs, current
trends, and potential future directions in the field. Our focus
is on stateful stream processing, which involves on-the-
fly processing of dynamic or streaming data, and is not
confined to specific design and implementation choices such
as dataflow engines and distributed systems. We emphasize
six aspects of TSP:

• Background: The history, motivation, and various
transaction models over data streams.

• Properties: Key properties like transactions, delivery
guarantees, and state management.

• Design Aspects: Examination of design factors including
languages, APIs, and architectures.

• Technologies: Analysis of the technologies and
alternatives used in TSP implementation.

• Systems: A review of representative TSP systems,
highlighting features, strengths, and weaknesses.

• Applications: An overview of real-world applications
and scenarios where TSP offers valuable insights and
supports improved decision-making.

1.3 Outline of the Survey

The remainder of this survey is organized as follows:
Section 2: Introduces TSP’s background, conceptual
framework, and transaction models over data streams.
Section 3: Discusses the taxonomy of TSP systems,
including properties, design aspects, and implementation
technologies. Section 4: Surveys and compares early and
recent TSP systems based on the taxonomy from Section 3.
Section 5: Showcases applications and use cases such
as stream processing optimization and concurrent stateful
processing. Section 6: Highlights open challenges and
future directions including novel applications and hardware
platforms. Section 7: Concludes with a summary of key
findings and insights.



A Survey on Transactional Stream Processing 3

2 Background

In this section, we provide an overview of key terms
and concepts central to understanding transactional stream
processing systems (TSP). We begin with fundamental
definitions, present a conceptual framework of TSP, and
explore various transaction models over data streams,
referencing sources such as Babcock et al. [13].

2.1 Terms and Definitions

A data stream represents a continuous flow of data reflecting
underlying signals, such as network traffic streams. An
event e is a 2-tuple e =< t,v >, comprising a timestamp
and a payload, signifying the occurrence time and the
relevant data, respectively. Stream queries consist of
operators, fundamental computational units, that process
events continuously. They can be traditional, like join and
aggregation, or user-defined in modern Stream Processing
Engines (SPEs). Windows are subsets of streams, allowing
the system to handle infinite streams, and they can be
categorized into types like tumbling, sliding, and session
windows. The state enables the juxtaposition of current data
with historical data, vital for analyzing streams.

A dataflow model serves as a powerful abstraction in
stream processing. A data flow breaks tasks into smaller
units and coordinates their potentially parallel execution
across nodes, typically represented as directed acyclic
graphs (DAGs), where nodes are operators and edges denote
data that is being transferred between the operators. Data
flow models are commonly used in stream processing.
However, there are also other paradigms (e.g., relational
model [40]), which we consider in this survey.

2.2 Conceptual Framework of TSP

This section provides a comprehensive conceptual
framework for transactional stream processing (TSP)
systems, embracing various paradigms and models beyond
the conventional dataflow approach. The expanded scope
caters to a broader class of systems such as STREAM [40],
recognizing the diversity and complexity in TSP systems.

2.2.1 Key Components

A TSP system is comprised of five components:
transactions, transaction models, operators, scheduler,
and storage.

Transactions are critical components of TSP systems,
ensuring that data is processed and maintained consistently
and reliably. Transactions combine the real-time nature
of stream processing with the reliability and consistency

guarantees of traditional transactional systems. Transaction
models describe the granularity and scope of transactions
within a TSP system. In TSP, a transaction is considered
committed when it has successfully completed an operation
(e.g., insertion, update, deletion) and the system has
confirmed that transactional changes are consistent with the
desired transactional guarantees (e.g., consistency, isolation,
durability). Upon committing a transaction, the system
ensures that its effects are persistent and can be recovered in
the event of a failure. This concept of “commit” is essential
in TSP systems to maintain the integrity and consistency of
the data during processing.

Operators are responsible for processing incoming
and outgoing data, and performing operations, such as
filtering, aggregation, transformation, or joins. Operators
may also have mutable state that needs to be managed in
a transactional manner. Scheduler manages the execution
of operators and ensures that transactions are executed in
the correct order, according to the chosen consistency and
isolation models. Schedulers may need to handle out-of-
order events, coordinate distributed execution, and manage
resource allocation.

The storage of a TSP system handles both transient and
permanent states. Due to performance reasons, TSPs will
often employ two different memory subsystems for storing
these different types of state: (1) a in-memory storage that
holds the mutable state and intermediate results, allowing
fast access but vulnerable to system failure. (2) a persistent
storage that ensures durability through databases or logs,
which enable state recovery in failure scenarios.

2.2.2 Key Design Aspects

The conceptual framework of a TSP system covers the
key aspects to consider when designing and implementing
a TSP system, taking into account various classes and
models, and including but not limited to dataflow models.
This multi-dimensional view of the TSP system offers a
rich and flexible understanding that accommodates different
perspectives in the field and sets the boundaries for our
analysis. The framework is inclusive and reflective of the
dynamic and multifaceted nature of TSP systems.

Language: The language aspect of a TSP system defines
the syntax and semantics for expressing streaming and on-
demand queries, as well as the transactional properties (e.g.,
consistency, isolation, durability). This aspect is related to
the transaction models and operators, as it provides the
means for developers to define and manipulate transactions
and the operations they perform.

Programming Model: The programming model refers to
the way developers interact with the TSP system to
define and manage stateful operations and transactional



4 Shuhao Zhang et al.

guarantees. This aspect is related to transactions, transaction
models, and operators, as the programming model provides
the framework for working with these components in a
structured and organized manner.

Execution Model: The execution model focuses on how
the TSP system processes both streaming and on-demand
queries while providing transactional guarantees. This
aspect is related to the scheduler and operators, as the
execution model determines how the scheduler manages
the execution of operators and ensures that transactions are
executed in the correct order, according to their consistency
and isolation models.

Architecture: The architecture aspect of a TSP system
encompasses the overall design and structural organization
of the system. This includes the arrangement and
interaction of the key components such as transactions,
transaction models, operators, scheduler, and storage, and
how they work together to meet the requirements of
stream processing and data management. Specifically, the
architecture: (1) Defines the physical layout of the system,
including the distribution and placement of processing
nodes, network topology, and data storage locations. (2)
Dictates the system’s behaviour, including the strategies
for parallel processing, fault tolerance, scalability, and
resource management. (3) Shapes the system’s extensibility,
including how new features, components, or optimizations
can be added or modified to meet evolving needs.

2.3 Transaction Models over Data Streams

Next, we discuss some notable transaction models over
data streams, along with their implementation approaches,
to provide an understanding of transactional guarantees in
stream processing.

2.3.1 Abstract Models

Various transaction models have been explored for stream
processing applications to address consistency guarantees.
These models serve as processing paradigms in TSP
systems, defining the boundaries of a transaction, i.e., the
set of related state changes that are committed as a single
unit. The state changes within a transaction can include both
internal state modifications and external side-effects, such
as sending a message to a sink. Below, we describe five
common transaction models in TSP systems:

Per-tuple Transactions: In this model, each tuple in the data
stream triggers a set of related state changes, and these
changes are grouped and treated as a single transaction,
adhering to ACID properties. Essentially, every tuple results
in a transaction that encapsulates all state changes caused

by that tuple. This approach is suitable for scenarios
requiring atomic and isolated processing of individual
events. However, it may introduce significant overhead due
to frequent coordination between processing nodes.

Micro-batch Transactions: Here, data streams are divided
into small, bounded micro-batches, and transactions are
executed over these batches. Unlike per-tuple transactions
where each tuple defines a transaction, micro-batch
transactions treat a whole batch as a single transaction
boundary, grouping the changes caused by all tuples in the
batch. This reduces the overhead associated with per-tuple
transactions and allows for parallelism and optimization
opportunities, but may introduce additional latency.

Window-based Transactions: These transactions are
executed over windows defined by criteria such as a
unit of time or the number of events. The windows
aggregate related events, and transactions are executed
over these windows, encompassing all state changes
within the window boundary. This approach provides
stronger consistency guarantees but can be challenging to
manage, especially when dealing with out-of-order events
or evolving window types.

Group-based Transactions: Unlike window-based
transactions that are defined by temporal or numerical
boundaries, group-based transactions are executed over
groups of related events defined by specific criteria, such
as thematic relationships or business rules. This model
provides fine-grained control over transaction boundaries,
offering stronger consistency guarantees for complex
processing tasks but can be complex to manage.

Adaptive Transactions: This model enables flexibility
in defining transaction boundaries within TSP systems,
allowing adjustments based on workload, system state, or
application-specific needs. Rather than being an engine
implementation detail, this adaptiveness is a fundamental
part of the transaction model, providing a responsive
framework tailored to the dynamic nature of stream
processing. Implementing adaptive transactions can be
challenging, as it requires real-time monitoring and the
adaptation of transaction boundaries.

2.3.2 Implementation Approaches

Implementation approaches for the aforementioned
transaction models can be classified into three categories:
unified transactions, embedded transactions, and
state transactions. Depending on an application’s
specific requirements, an appropriate combination of
implementation approach and particular transaction model
should be chosen to achieve the desired performance,
scalability, and fault tolerance capability.



A Survey on Transactional Stream Processing 5

Unified Transactions: This approach embeds stream
processing operations into a transaction, providing a
single framework for handling both stream processing and
transactions. Unified transactions can potentially support
various transaction models, as it allows flexibility in
defining the scope and granularity of transactions. However,
it might be more suitable for fine-grained transaction
models, such as per-tuple or micro-batch transactions.

Embedded Transactions: This approach embeds
transaction processing into stream processing, allowing
for transactional semantics without the need for separate
transaction management. Embedded transactions can be
more efficient for certain transaction models, particularly
when a lightweight transaction mechanism is required. It
might be better suited for per-tuple, micro-batch, or adaptive
transactions, where the overhead of separate transaction
management can be minimized.

State Transactions: This approach separates transaction
processing and stream processing, focusing on managing
shared mutable state through transactions. State transactions
can also support different transaction models, but are more
suitable for scenarios where state management is a primary
concern, such as window-based, group-based, or adaptive
transactions.

3 Taxonomy of TSP

In this section, we examine a taxonomy of Transactional
Stream Processing (TSP) as illustrated in Figure 3.
The taxonomy is structured into three key categories:
Properties of TSP: Here we examine the characteristics and
requirements of TSP systems, including ordering, ACID
properties, state management, and reliability. Analyzing
these properties enables us to better understand the
fundamental issues and challenges prevalent in TSP
systems that seek to ensure accurate and reliable data
processing. Design Aspects of TSP: Here we explore
the design considerations in TSP systems, spanning
transaction implementation, boundaries, execution, delivery
guarantees, and state management. Investigating these
design aspects aids us in evaluating the suitability of TSP
systems for specific applications and provides insights
into various design choices and trade-offs. Implementation
Details: Here we address the practical aspects of TSP
system implementation, such as programming languages,
APIs, system architectures, and component integration.
This section also discusses performance metrics and
evaluation criteria for TSP systems. By examining these
implementation details, we gain a deeper understanding
of the practical challenges and proposed solutions in the
development of TSP systems. Ultimately, this enables us to
be more informed about the choices that must be made when

designing or selecting which TSP system to employ for a
given use case.

3.1 Properties of TSP

A TSP model is required to meet both the ordering
properties of streaming operators and events, and the
ACID properties of transactions, while also addressing
state management, reliability, fault tolerance, and durability.
These elements along with the CAP theorem’s implications
are crucial to the design and functionality of TSP systems.
Hence, we will delve into these properties in the subsequent
sections, starting with ordering properties followed by
ACID properties.

3.1.1 Ordering Properties

In TSP systems, there are two critical ordering properties:
event ordering and operation ordering.

Event Ordering: Event ordering requires that transactions
be processed according to the order of their triggering
events, typically based on timestamps or some other logical
ordering mechanism. This property is crucial to ensure
transactions are executed in the correct sequence, so as to
avoid inconsistencies. It also helps prevent race conditions
or out-of-order processing, which can occur in distributed
TSP systems with high levels of parallelism. It is worth
noting that the ordering schedule is determined explicitly by
the input event rather than the transaction execution order.

To maintain event order TSP systems may employ
strategies such as locking, versioning, or optimistic
concurrency control. Golab et al. [37] propose two stronger
serialization properties with ordering guarantees. The first
is called window-serializable, which requires a read-
only transaction to perform a read either strictly before
a window is updated or after all sub-windows of the
window are updated. The second is called latest-window-
serializable, which only allows a read on the latest version
of the window, i.e., after the window has been completely
updated. Instead of imposing an event ordering, FlowDB
[6] enables developers to optionally ensure that the effects
of transactions are the same as if they were executed
sequentially (i.e., in the same order in which they started).

Operation Ordering: In many TSP systems, applications
can be represented using dataflow models, such as directed
acyclic graphs (DAGs), where operators are connected by
data streams [88]. Operation ordering refers to the sequence
in which operators are executed in a TSP system, which
impacts the correctness and efficiency of the system. Via
operation ordering, the data that flows through the pipeline
will be processed correctly: thereby contributing to the



6 Shuhao Zhang et al.

Transactional Stream Processing
Properties of TSP

Ordering
Properties

Event
Ordering 

Operation
Ordering 

ACID
Properties

Atomicity

Consistency

Isolation

Durability

State Management
Properties

State Types

Read-
only state

Read-write
state

Access Scope

shared
globally

intra-
operator

inter-
operator

Delivery
Guarantee

Fault Tolerance
and Durability

CAP
Theorem

Reliability and
Delivery Guarantee

State
Recovery

Managing
Large States

Implementation Details

Languages and
APIs

Declarative

Functional

System
Architectures

Extending a
DBMS

Embedding a
DBMS in an SPE

Composing a
DBMS and an

SPE

Performance
Metrics

Throughput

Latency
Scalability

Correctness
Guarantee

Design Aspects of TSP

Implementing
Transactions

Unified
Transaction

Embedded
Transaction

State
Transaction

Determing
Transaction
Boundaries

Triggering
Units

Generating
Units

Transaction
Spawning

Executing Transactions

Lock-based
Approaches Partition-based

Approaches

Snapshot Isolation
Approaches

Optimistic
Approach

Single-version lock-
based

Multi-version lock-
based

Static partition-
based

Dynamic
partition-based

Ensuring Delivery
Guarantees

Achieving ACID
Properties

Achieving Streaming
Properties

Implementing State
Management

Access Scope

Storage
Models

Data Manipulation
Statements

State Management
Strategies

Relations

Key-Value
Pairs

In-memory
state

External state
stores

Hybrid state
management

intra-
operator

inter-
operator

inter-
system/global

sharing

Fig. 3: Taxonomy of TSP.

consistency and correctness prevalent in a TSP system.
When an application is represented using a DAG, the
operation ordering is determined by the directed edges
between the operators. Although the operation ordering
may be expressed differently for alternative representations,
the ordering property guarantees the outcome will be the
same. Consider a scenario where a TSP system adopts a
dataflow model for stream processing - the ordering property
is inherently upheld in such a setup. Nevertheless, if a
database system incorporates TSP, an added prerequisite
for operation ordering becomes necessary to guarantee
consistency and accuracy, as detailed in the work of S-
Store [54].

3.1.2 ACID Properties

TSP systems manage the flow of data tuples, where
transactions can involve state changes within the system
and potential side-effects, such as notifications to external
components. The state in TSP refers to the information held
within the system at any point, including data aggregates,
intermediate results, or configurations. The application of
a transaction in this context means executing a series of
operations that may update this state, following certain rules
or models. TSP can offer traditional ACID guarantees [15]
similar to those in relational databases, with some necessary
adaptations. These are briefly described below:

Atomicity: Atomicity ensures that transactions are either
fully completed or aborted. In TSP systems, all operations
within a transaction are either successfully processed
together or not processed at all: thereby preventing partial
updates that could lead to an inconsistent state. Atomicity in
TSP varies depending on the transaction model. Traditional
commit protocols, such as two-phase commit (2PC), ensure
atomicity by coordinating commit or abort decisions
among distributed participants. In contrast, sagas [36]
allow the exposure of intermediate (uncommitted) state
and require developers to define compensating actions for
each operation, thereby offering a more flexible way to
handle atomicity at the cost of strong isolation guarantees.

Some TSP systems, like the one proposed by Wang
et al. [84], relax atomicity in certain contexts, which
enables developers to choose the desired consistency
level. In such cases, alternative atomicity models, like
sagas, can be adopted to balance the trade-offs between
consistency, performance, and availability. Understanding
these differences is crucial for designing TSP systems with
appropriate atomicity guarantees.

Consistency: Consistency in the context of ACID refers
to the requirement that every transaction moves the
system from one consistent state to another. This involves
the preservation of integrity constraints, which are rules
defining the valid states of the data within the stream
processing system, such as relationships between entities
or domain-specific rules. In TSP systems, consistency
also encompasses the processing and updating of data
according to a specified consistency model, such as strong
or causal consistency. This aspect is crucial in stream
processing, where real-time data interactions guide the
interactions between continuous transactions. The choice of
consistency level may have implications for complexity and
performance, as stronger consistency guarantees typically
require more stringent enforcement of integrity constraints
and other rules [6, 88].

Isolation: Isolation prevents concurrent transactions from
interfering with one another [83]. In TSP systems,
isolation is essential for ensuring that the output data
remains consistent despite the concurrent execution of
transactions triggered by the processing of concurrent input
events. Different isolation levels can be provided by TSP
systems, such as serializability, snapshot isolation, or read
committed [6]. Some TSP systems may offer configurable
isolation levels, allowing developers to adjust the isolation
guarantees according to the application’s specific needs.

Durability: Durability in TSP systems guarantees that once
a transaction is committed, its changes are permanently
stored, typically ensured through replication, logging, or
checkpointing [83]. Unlike classic transactional systems,



A Survey on Transactional Stream Processing 7

TSP’s recovery mechanism might replay input streams to
rebuild the state, a process that may not always restore an
identical state due to factors such as concurrent processing
and timing differences. The consequences of not reaching an
identical state can lead to deviations in processing results,
differentiating TSP from traditional transactional systems.
Therefore, TSP systems need to satisfy properties like input
preservation, state maintenance, and output persistence,
often achieved through strategies like replication, logging,
or checkpointing. These strategies must balance trade-
offs between performance, availability, and the specific
requirements of the application. This complex yet essential
aspect of Durability in TSP systems underscores the need
for careful design to build resilient TSP systems that meet
the expectations and needs of the applications and users.

3.1.3 State Management Properties

Effective state management is essential in TSP systems to
ensure data consistency, support the stateful processing of
operations, and failure recovery. Among the primary state
management properties are state types, access scope, state
recovery, and the management of large states.

State Types: States in TSP systems can be characterized by
the interaction between different components or actors that
may read or write the state: a) Read-only state: In some
scenarios, the state of the system is considered read-only
from the perspective of external clients, as they can only
observe or query the content of the state. Internally, the
system may update its state upon receiving new events from
the input streams, but these updates are not accessible to the
clients. b) Read-write state: In other scenarios, the state
within the TSP system itself is modifiable as stream events
are processed. This type of state allows both reads and
writes during the execution, requiring careful management
of concurrency control, especially when multiple entities
(e.g., threads or processing units) may concurrently modify
the same state. This categorization highlights the complexity
of state management in TSP systems, reflecting the different
interactions and permissions regarding state access from
various perspectives within and outside the system.

Access Scope: Access scope in TSP systems defines the
visibility and accessibility of state information and can
influence both the implementation and the programming
interface. From an implementation perspective, the access
scope dictates whether the state is shared globally,
partitioned across parallel processing instances, or limited
to specific operators or groups of operators. Shared states
may include structures like the index of an input stream
or other user-defined data structures shared among threads
of the same operator, operators, and queries. From the
programming interface perspective, the access scope also

dictates the types of queries that can be made on the
state. Some systems may support on-demand queries of
the state, with varying levels of expressivity. Queries may
be restricted to single operators or tables, single partitions,
or may even integrate data from multiple operators.
The flexibility and restrictions in querying significantly
impacts the programming model and influences aspects
like performance, consistency, and fault tolerance. By
addressing both these perspectives, access scope forms a
critical aspect of state management in TSP systems.

State Recovery: State recovery in TSP systems is integral
to maintaining the integrity and continuity of transaction
processing over data streams. In the event of a system
failure, state recovery ensures that processing can resume
without loss of consistency or reliability. This involves
preserving ACID even during failures. The state recovery
property in TSP systems must prioritize a balance between
recovery speed and assurance that the restored state
aligns with the pre-failure state. This reflects the unique
challenge in TSP systems of managing continuous, real-time
transactions where both prompt recovery and adherence to
transactional principles are paramount.

Management of Large States: Managing large states is a
fundamental challenge in TSP systems, particularly with
growing data volumes and transaction numbers. Several
traditional techniques might be adapted to TSP, though
they require further investigation and innovation: 1) Data
Sharding and State Partitioning: These methods [34] could
provide scalability but need careful exploration within TSP;
2) State Compaction: A promising strategy [62, 77] for
reducing storage needs, yet its practical implementation
in TSP is still unexplored; 3) State Checkpointing:
Introducing state checkpointing [14] to TSP is currently
being researched, and it could enhance recovery and
durability; 4) State Replication, Eviction, and Expiration
Strategies: While widely applied, these techniques [46]
remain largely unexplored in TSP but may offer benefits for
resource management and fault tolerance.

3.1.4 Reliability and Delivery Guarantees

Fault tolerance, durability, and deliverability are essential
properties of TSP systems. These properties ensure that TSP
systems can accurately process data and maintain their state,
even in the face of failures, duplicate messages, and out-of-
order events.

Delivery Guarantees: Delivery guarantees in TSP systems
define how input events are processed especially when
failures, duplicate messages, or out-of-order events occur.
Common delivery guarantees include at-most-once, at-least-
once, and exactly-once processing. Exactly-once processing
is often the most desirable for TSP systems, as it ensures



8 Shuhao Zhang et al.

that each event is processed precisely once, irrespective of
issues during processing.

Fault Tolerance: A fault-tolerant TSP system continues
processing events and adhering to delivery guarantees
despite failures. Recovery mechanisms, such as state
replication, checkpointing, and log-based recovery, enable a
system to minimize data loss and quickly recover. However,
the ability to guarantee exactly-once processing requires
that recovery leads to a consistent state that reflects all
committed transactions.

Durability: Durability involves persistent data storage to
safeguard its availability for retrieval. This property is
essential for upholding delivery guarantees. However, as
noted in Section 3.1.2, recovery mechanisms may not
always lead to the same state. The commitment to exactly-
once processing implies that the system must ensure a
consistent recovery that honors all processed and committed
input events, rather than strictly restoring the exact previous
state.

CAP Theorem: The CAP theorem applies to distributed
systems, stating that it is impossible to simultaneously
achieve consistency (across replicas), availability, and
partition tolerance. In the context of TSP systems, these
principles must be balanced according to specific needs.
Emphasizing consistency and partition tolerance may slow
response times, whereas prioritizing availability can lead
to faster responses but potentially stale data. It is vital
to differentiate consistency in the CAP theorem from
transactional consistency in ACID transactions, as they
relate to distinct aspects of TSP systems.

Remark 1 (Beyond Exactly-Once Guarantee) TSP systems
may face unique challenges requiring more stringent
delivery guarantees than the exactly-once guarantee
typically found in many SPEs. Specifically, TSP systems
must replay failed tuples in the exact timestamp sequence of
their triggering input events and prevent duplicate message
processing. This is crucial because results depend on the
local state of an operator and the time ordering of input
streams.

One approach to achieving this advanced level of
delivery guarantee involves checkpointing or archiving each
input event before processing and sequentially replaying
them in case of failure [26]. While this method provides
the desired guarantee, it incurs significant overhead, making
it unsuitable for many TSP systems. Consequently, further
research is required to identify more efficient mechanisms
that can satisfy the delivery guarantee needs of TSP systems
while minimizing performance overhead.

3.2 Design Aspects of TSP

The design aspects of TSP systems focus on the critical
components required to create a functional and efficient TSP
system. These components include the implementation of
transactions, determining transaction boundaries, executing
transactions, delivering guarantees, and managing the
state. Understanding these design aspects is crucial for
evaluating the suitability of different TSP systems for
specific application requirements and providing insights into
various design choices and trade-offs.

3.2.1 Implementing Transactions

To actualize a transaction model over data streams,
three primary approaches have been proposed: embedding
stream processing operations into transactions (i.e., unified
transactions), embedding transaction processing into stream
processing (i.e., embedded transactions), or combining
transaction processing and stream processing (i.e., state
transactions). The choice among these approaches depends
on the specific requirements and constraints of the system,
and they may interact with each other in complex ways.
Below, we discuss each of these in turn:

Approach 1: Unified Transactions. Unified transactions
integrate stream processing and transaction processing
within systems adopting a relational query model, treating
data streams and relational data uniformly [10, 40, 56]. This
approach leverages existing relational data management
techniques for transactional consistency, enabling a unified
framework that accommodates both stream processing and
transactional aspects. Several studies have explored the
implementation of continuous queries as sequences of one-
time queries, which are executed as a result of data source
modifications or periodic execution [19, 54, 58, 59]. These
studies illustrate methods to unify stream processing and
transaction processing, so as to enable the use of a single
execution engine for both types of operations.

Definition 1 (Unified Transaction) Let DS = {Si,So, . . .}
be a set of data sources and sinks, and DI be the data items
in DS. A unified transaction T is represented by the pair T =

(Oi,≤T ), where:

• Oi: A set of read (r) and write (w) operations on DS,
each operation o ∈ Oi is a function o : DI → DI that
modifies or retrieves a specific data item d ∈ DI. This
set represents the operations on the data items within the
given data sources and sinks.

• ≤T : A partial order satisfying:
⋄ New streaming events and continuous query

executions are represented as write (w) and read (r)
operations, respectively.



A Survey on Transactional Stream Processing 9

⋄ For all op,oq ∈ Oi accessing the same data item,
with at least one write (w), either op ≤T oq or oq ≤T
op.

Constraints: The operations in Oi must adhere to certain
constraints depending on the specific requirements of the
TSP system, such as maintaining consistency or availability,
as defined by the system’s design and the nature of the data
items.

Design Aspects: The design space for unified
transactions consists of several aspects, including data
modelling, query execution, and transaction management.
1) Data Modeling: Data streams are represented as time-
varying relations, with both input and output streams
treated as continuous relations that are updated with new
events, each marked with a timestamp. This representation,
where each stream corresponds to a single relation, enables
the use of relational algebra and SQL-like queries, and
simplifies integration with existing database systems. 2)
Query Execution: Queries over data streams are often
continuous: they are evaluated over an unbounded sequence
of input data. Unified transactions represent continuous
queries as a sequence of one-time queries triggered by data
source modifications or periodic execution. This approach
allows for the reuse of existing query processing techniques
from relational databases while ensuring the continuous
nature of stream processing is maintained. 3) Transaction
Management: To ensure transactional consistency and
correctness, the unified transactions approach relies on
relational data management techniques, in particular,
concurrency control and recovery mechanisms, such as two-
phase locking and logging, to provide isolation, atomicity,
and durability guarantees.

Pros and Cons: The unified transactions approach
simplifies system architecture and leverages well-
established relational data management techniques.
However, this approach may introduce additional overhead
due to the transformation of data streams into relational
data, a process that can be computationally expensive
for several reasons. First, the transformation requires
mapping continuous, unbounded data streams into
discrete, time-varying relations, involving time-windowing,
data discretization, and possible aggregation. These
computations require additional processing resources and
may induce latency. Second, unifying the data model
between streams and relational data may necessitate
complex schema matching and data type conversions,
further contributing to computational overhead. Finally,
maintaining consistency and transactional guarantees
within this unified model may require additional locking,
logging, or other concurrency control mechanisms, which
can also increase the system’s complexity and resource
requirements. Thus, this approach may not be suitable

for all TSP systems, particularly those with strict latency
requirements or complex stream processing needs.

Approach 2: Embedded Transactions. Embedded
transactions integrate transaction processing into the stream
processing pipeline [69], allowing real-time processing
while maintaining consistency and reliability. Several
studies, including those exploring incremental continuous
query processing with isolation guarantees [69], have
explored the embedded transactions approach. For instance,
Shaikh et al [69] propose a model that treats each incoming
data item as a part of the processing pipeline, allowing
real-time processing while maintaining consistency and
reliability guarantees.

Definition 2 (Embedded Transaction) Let S =

{s1,s2, . . . ,sn} be a data stream consisting of data items, and
O = {o1,o2, . . . ,om} be processing operations that act on
the data items, including join operations with relations. An
embedded transaction treats incoming data as a continuous
flow, where:

• Each data item si ∈ S initiates a subset of operations Oi ⊆
O, where each operation o ∈ Oi is a function o : S → S
that modifies or retrieves a specific data item.

• The processing follows properties such as isolation,
atomicity, and consistency, with constraints to ensure
that the operations meet the specific requirements of the
system.

• Mechanisms like snapshot isolation and optimistic
concurrency control may be used to maintain
consistency in the presence of concurrent updates.

Design Aspects: Key aspects of embedded transactions
involve processing events as they arrive, managing state
information between processing steps, and incorporating
data partitioning, replication, and checkpointing to achieve
transactional guarantees. Next, we examine each of these
aspects in turn. 1) Event-Driven Processing: The embedded
transaction approach employs event-driven processing,
where each event in the data stream triggers one or
more stream processing operations. This allows for low-
latency processing and maintains the temporal order of data
streams. 2) State Management: State management is crucial
in the embedded approach since it enables the retention
and manipulation of information between processing steps.
State management varies across systems, with some
using distributed storage systems or in-memory data
structures for efficient state management. 3) Transactional
Guarantees: The embedded transaction approach provides
transactional guarantees, such as consistency, isolation, and
durability within the stream processing pipeline. To achieve
these guarantees, they employ techniques, such as data
partitioning, replication, and checkpointing.



10 Shuhao Zhang et al.

Pros and Cons: The embedded transaction approach
offers benefits, such as low-latency processing and the
native handling of complex stream processing tasks.
Nevertheless, implementing transactional guarantees
within the stream processing pipeline could necessitate
substantial effort. Furthermore, this approach might not
be optimal for applications necessitating integration with
established relational databases or traditional transaction
processing systems. Developers should carefully assess the
requirements and constraints of their specific application
to determine whether this approach is appropriate for their
TSP system.

Approach 3: State Transactions. The state transaction
approach merges transaction processing and stream
processing within a single system and handles state access
operations as transactions. This enables TSP systems
to provide transactional guarantees while processing
unbounded data streams and ensure correctness via
transactional semantics and the modelling of state accesses
as state transactions.

Definition 3 (State Transaction) Let S = {s1,s2, . . . ,sn}
be a data stream of incoming events, R = {r1,r2, . . . ,rp}
be shared mutable states that represent different aspects of
the system’s state, and O = {o1,o2, . . . ,om} be processing
operations that may read from S, modify R, or both. A state
transaction Ti is represented by the triplet (Si,Ri,Oi), where:

• Si ⊆ S is a subset of the data stream that the transaction
operates on.

• Ri ⊆ R is a subset of the shared mutable states that may
be affected by the transaction.

• Oi ⊆ O is a subset of operations that are applied to the
elements of Si and may modify the states in Ri.

• All operations within the transaction share a timestamp
ts, ensuring coordinated execution and consistency
across the state.

Design Aspects: State transactions focus on managing
shared mutable states through transactions. Key aspects
include managing state information between processing
steps and decoupling transaction processing from stream
processing. Design considerations include dataflow models,
state access operations, coordination mechanisms, and fault
tolerance and recovery. Next, we examine each of these
design considerations in turn. 1) Dataflow Models: The
state transaction approach typically uses dataflow models
to process data streams consisting of interconnected stateful
operators. These operators process events, update state, and
produce output events, which is amenable for parallel and
distributed processing. 2) State Access Operations: State
transactions treat state access operations as transactions,
where each operation is associated with a unique timestamp.

This enables complex processing tasks and transactional
guarantees, like consistency, isolation, and durability. 3)
Coordination Mechanisms: The state transaction approach
coordinates state transactions across the dataflow pipeline
using mechanisms, such as two-phase commit protocols,
timestamp-based ordering, or conflict resolution strategies,
to maintain consistency and isolation. 4) Fault Tolerance
and Recovery: The state transaction approach provides fault
tolerance and recovery mechanisms, such as replication,
checkpointing, and logging, to ensure durability and
resilience against failures.

Pros and Cons: The state transaction approach
integrates transaction processing into the stream processing
pipeline, handles complex processing tasks, and provides
transactional guarantees. However, this approach may
introduce additional complexity due to the use of
coordination and fault tolerance mechanisms. Developers
should carefully assess their application’s requirements
and weigh the benefits against the potential complexities
introduced by this approach.

Remark 2 (Comparing Among Approaches) We illustrate
the differences among the three approaches using a common
example scenario. Consider a system that monitors traffic in
a smart city. It continuously receives data from sensors at
intersections to control traffic lights, update maps, and alert
drivers.

Unified Transactions Implementation: This approach
integrates continuous stream processing with transaction
processing:

T =(w(SensorData),r(TrafficMap),r(LightControl),

w(UpdatedMap),w(Alerts))

where w and r denote write and read operations respectively.
The sequence includes writing sensor data, reading traffic
maps and light states, and writing updates.

Embedded Transactions Implementation: Each incoming
sensor data piece is treated as part of a continuous flow:

si = (SensorReading),

Oi = (AnalyzeData,UpdateMap,ControlLights,SendAlerts)

Operations include analyzing data, updating the traffic map,
controlling lights, and sending alerts.

State Transactions Implementation: This approach handles
both sensor data and mutable states:

Ti = ({SensorReading},{TrafficMapState,LightControlState},
{AnalyzeData,UpdateMap,ControlLights,SendAlerts})

The process includes reading data, managing shared states
(traffic map and lights), and performing operations like
analysis, updates, and alerting.



A Survey on Transactional Stream Processing 11

Summary: Unified Transactions integrate streaming
with transactional operations, representing a complex
sequence of reads and writes. Embedded Transactions treat
the continuous flow of sensor data, translating each reading
into operations. State Transactions manage shared mutable
states (traffic map and lights), encapsulating the entire
process in a state transaction. Each approach offers unique
advantages and trade-offs: Unified transactions are suited
for complex queries; Embedded transactions for real-time
continuous processing; and State transactions for robust
handling of shared states within a transactional framework.

3.2.2 Determining Transaction Boundaries

Determining transaction boundaries is an essential aspect
of TSP system design, as it defines which operations are
grouped into transactions. It turns out that establishing
transaction boundaries over streams can be quite flexible,
particularly for state transaction implementation. First,
various conditions can initiate a transaction (i.e., triggering
unit), such as per input event or per batch of events with a
common timestamp. Second, different entities can generate
a transaction (i.e., generating unit), such as per operator
and per query. Furthermore, transactions themselves can
spawn additional transactions. Let us examine each of these
settings in turn.

Setting 1: Triggering Units. TSP systems rely on incoming
streaming events to initiate transactions. The granularity
of transaction boundaries is defined by various types of
triggering units, including time-based, batch event-based,
single event-based, and user-defined triggers. Next, we
describe each of these in turn.

Time-based Triggers. Time-based triggers refer to
transactional models in which the transaction boundaries
are determined by time intervals. These intervals can be
either fixed or dynamically adjusted based on the application
requirements or the characteristics of the data streams.
It often assumes that events with a common timestamp
are executed atomically. This approach is employed in
both academic projects, such as STREAM [10, 40] and
commercial products, like Coral8 [2]. Time-based triggers
are suitable for the concurrent aggregation of sliding
windows, the association of transaction boundaries with
window boundaries, and the management of long-running
queries with specified re-execution frequencies [33, 37, 60].

Batch Event-based Triggers. These transactions are
triggered when a batch of events with a shared characteristic
(e.g., common timestamp, originating from the same stream)
are processed. Batch event-based triggers are used in
DataCell [48,49], S-Store [54], and Chen et al.’s cycle-based
transaction model [30, 31].They can handle large volumes
of data and provide consistent processing across multiple
streams.

Single Event-based Triggers. In this type, a transaction
is triggered for each incoming event. Single event-based
triggers ensure fine-grained control and consistency on
an event-by-event basis. They have been implemented
in various systems, such as Aurora and Borealis [4, 5],
ACEP [84], SPASS [65], and TStream [88]. This type
of transaction is suitable for applications requiring strict
consistency guarantees and low-latency processing. The
reason for this suitability lies in the individual handling
of each event as a separate transaction. This ensures that
every event is processed in isolation, maintaining strong
consistency. Furthermore, by initiating a transaction for
every individual event, the system can quickly react to
incoming data, thereby facilitating low-latency processing.
This can be critical for real-time applications where swift
response to each input is required.

User-defined Triggers. In this type, users can define
custom triggering conditions based on their specific
application requirements, which offers flexibility when
establishing transaction boundaries and declaring
processing guarantees. Botan et al. [19] and Chen et
al. [29] demonstrate the use of user-defined transactions in
their respective systems.

Setting 2: Generating Units. While triggering units
determine “when” a transaction is created, generating units
focus on “who” generates a transaction. Transactions can
be generated by user clients directly or through continuous
queries on a per-query or per-operator basis. Next, we
describe each unit type in turn.

Query-based Generator. These transactions group
operations involved in the one-time execution of an entire
query [10, 40]. Early Stream Processing Engines (SPEs)
employed query-based triggers for the interactive processing
of both relational and streaming data, such as the STREAM
project [10,40]. This type simplifies the transactional model,
making it easier to manage and understand. However,
it may lack flexibility in some cases, where individual
operators within a query need to have separate transactional
boundaries or different isolation levels.

Operator-based Triggers. In this type, each operator in
a query generates its own transactions, such as S-Store [54]
and TStream [88]. Operator-based triggers provide a finer
level of granularity and flexibility compared to query-
based triggers, which enables more precise control over
shared states in streaming dataflow graphs. This can lead
to better performance and resource utilization in certain
scenarios. However, this increased flexibility may also result
in potential conflicts or dilemmas, such as deadlocks and
contention, which may require additional mechanisms to
resolve [54, 88].

User-defined Triggers. Some applications may require
ad-hoc transactional queries or user-driven transactions
during stream processing [6, 7, 29]. User-defined



12 Shuhao Zhang et al.

transactions allow users to specify where consistency
needs to be enforced and which consistency constraints are
required, as demonstrated in the work of Affetti et al. [6, 7].
This type grants more control to the user, thereby allowing
them to tailor transactional semantics to their specific
needs. However, this flexibility can make system-level
optimizations more challenging, as the transaction types
are not known in advance. Additionally, users bear the
responsibility of ensuring that the system is free of any
dilemmas or conflicts [6, 7].

Setting 3: Transaction Spawning. Transaction spawning,
i.e., the ability of transactions to trigger and generate
other transactions, is another way to determine transaction
boundaries in TSP systems. This concept is particularly
relevant in systems that require complex interactions and
dependencies between different transactions. For example,
in a service-oriented architecture, where functionalities
are treated as services, requiring atomic execution of
those transactions results in composite transactions. This
approach allows for a more flexible and dynamic processing
flow, accommodating continuous service executions and
interactions. Transaction spawning consists of a nonempty
set of services, some of which have continuous executions,
and others may spawn new transactions. In the context
of TSP, this provides the means to represent intricate
processing logic and dependencies, aligning with specific
user or application requirements [80–82].

3.2.3 Executing Transactions

Executing transactions involves processing the operations
within a transaction according to the defined transaction
boundaries and ensuring that the system maintains
the required ACID and streaming properties. Table 1
summarizes the execution mechanisms adopted by relevant
systems. These can be classified into five approach types:
single-version lock-based, multi-version lock-based, static
partition-based, dynamic partition-based, and optimistic.

Lock-based Approaches: Lock-based approaches ensure the
correct execution of transactions by controlling access to
shared resources. Using locks to protect shared states,
these methods prevent concurrent access and maintain
consistency. Lock-based approaches can be classified into
two main types:

a) Single-version lock-based: These approaches utilize
a single version of the shared state and apply locks to
ensure proper transaction execution. The challenge lies in
balancing synchronization and performance without causing
excessive contention or delays in transaction processing. We
discuss three notable examples of single-version lock-based
approaches as follows.

In STREAM [40], synopses enable different operators
to share common states. To guarantee that operators view

Table 1: Execution mechanisms of TSP systems.

Works Approach Key Notes
STREAM [40], Wang
et al. [84], Oyamada
et al. [58],
FlowDB/TSpoon [6,7]

single-version
lock-based

Each state is maintained with a single
copy; concurrent access is regulated by
exclusive locks with an event ordering
guarantee

Wang et al. [84] multi-version
lock-based

Each state is maintained with multiple
copies; concurrent access is regulated
by read-write locks with an event
ordering guarantee

S-Store [54] state
partition-based

Pre-partition states into disjoint
partitions, and regulate concurrent
access to each partition, similar to the
single-version lock-based approach

TStream [88],
MorphStream [51]

transaction
partition-based

Dynamically partition and regroup state
transactions to avoid conflicts

Golab et al. [37],
FlowDB/TSpoon [6,7] optimistic

Optimistically schedule concurrent state
transactions and abort transactions if
conflicts arise

Several prior
works [4,19,30,32,39]

snapshot
isolation

Implement the semantics of database
transactions to defined segments of data
streams, thereby assuring snapshot
isolation during the processing of these
segments

the correct version of a state, the system must track the
progress of each stub and present the appropriate view
(i.e., a subset of tuples) to each stub. This is achieved
through a local timestamp-based execution model with a
global schedule that coordinates the successive execution
of individual operators via time slot assignments. Batches
of tuples with the same timestamp are executed atomically
to ensure progress correctness, with a simple lock-based
transactional processing mechanism implicitly involved.

An earlier study by Wang et al. [84] describes
a strict two-phase locking (S2PL)-based algorithm that
allows multiple state transactions to run concurrently while
maintaining both ACID and streaming properties. Unlike
the original S2PL [15] algorithm, Wang et al. [84] lock
each transaction ahead of all query and rule processing.
In this process, each transaction’s timestamp is compared
against a monotonically increasing counter to ensure that
the transaction with the smallest timestamp always obtains
a lock first, thereby guaranteeing access to the proper state
sequence. Once lock acquisition is complete, the system
increases the counter and allows the next transaction to
proceed, regardless of whether the transaction was fully
processed. To fulfil event ordering constraints, read or write
locks are strictly invoked in their triggering event order.
However, the locking mechanism must synchronize the
execution for every single input event, which may negatively
impact system performance.

Oyamada et al. [58] propose three pessimistic
transaction execution algorithms: synchronous transaction
sequence invocation (STSI), asynchronous transaction
sequence invocation (ATSI), and order-preserving
asynchronous transaction sequence invocation (OPATSI).
STSI processes transactions triggered by event streams one
at a time, in event-arrival order. ATSI removes the blocking



A Survey on Transactional Stream Processing 13

behaviour of STSI by asynchronously spawning new
threads that wait for the transaction to complete. OPATSI
extends ATSI through a priority queue to further guarantee
the order of the results.

b) Multi-version lock-based: These approaches employ
multiple versions of shared states and use locks to control
access to different state versions. The main challenge is
ensuring that the correct state version is accessed while
avoiding outdated writes.

A notable example is Wang et al. [84], who propose
an algorithm called LWM (Low-Water-Mark), which relies
on the multi-versioning of shared states. LWM leverages
a global synchronization primitive to guard the transaction
processing sequence: write operations must be performed
monotonically in event order, but read operations are
allowed to execute as long as they can read the correct
version of the data (i.e., its timestamp is earlier than
the LWM). The key differences between LWM and
the traditional multi-version concurrency control (MVCC)
scheme are twofold. First, MVCC aborts and then restarts
a transaction when an outdated write occurs, while LWM
ensures that writes are permitted strictly in their timestamp
sequence, preventing outdated writes. Second, MVCC
assumes that the timestamp of a transaction is system-
generated upon receipt, whereas LWM sets the timestamp
of a transaction to the triggering event. This distinction
enables LWM to maintain a more event-driven approach to
transaction management, better aligning with the streaming
nature of TSP systems.

In summary, lock-based approaches to transaction
execution in TSP systems offer various methods for
managing access to shared resources and maintaining
consistency. While single-version lock-based approaches
focus on balancing synchronization and performance within
a single shared state, multi-version lock-based approaches
provide greater flexibility by managing multiple versions of
shared states. Both types of approaches present their own
challenges and trade-offs.

Partition-based Approaches: Partition-based approaches to
transaction execution in TSP systems involve dividing
the internal states or transactions into smaller units,
which can then be executed in parallel or with reduced
contention. These methods aim to improve performance
while maintaining consistency and adhering to event order
constraints. There are two primary types of partition-based
approaches:

a) Static partition-based: These approaches divide
the internal states of streaming applications into disjoint
partitions and use partition-level locks to synchronize
access. This approach is suitable for transactions that can
be perfectly partitioned into disjoint groups.

For example, S-Store [54] splits the streaming
application’s internal states into multiple disjoint partitions.

The computation on each sub-partition is performed by
a single thread. To guarantee state consistency, S-Store
uses partition-level locks to synchronize access. However,
state partitioning only performs well on transactions that
can be perfectly partitioned into disjoint groups, given
that acquiring partition-level locks on cross-partition states
significantly impacts performance due to the overhead.

b) Dynamic partition-based: These approaches involve
decomposing transactions into smaller steps and executing
them in parallel to improve performance while ensuring
serializability and meeting event order constraints (e.g.,
TStream [88] and MorphStream [51]).

The sagas model [36] allows a transaction to be split
into several smaller steps, each of which executes as a
transaction with an associated compensating transaction.
Either all steps are executed or in a partial execution
compensating transactions are executed for steps that
are completed. Thus, isolation is relaxed in the original
transaction and delegated to the individual steps. It exposes
an intermediate (uncommitted) state and requires developers
to define compensating actions. A similar idea of splitting
transactions has been adopted in TSP systems such
as TStream [88] and MorphStream [51] but does not
expose uncommitted states and hence does not require
compensating actions.

In particular, TStream [88] is a recently proposed
TSP system that adopts transaction decomposition to
improve stream transaction processing performance
on modern multicore processors. Despite the relaxed
isolation properties, TStream ensures serializability, as all
conflicting operations (being decomposed from the original
transactions) are executed sequentially as determined
by the event sequence. The successor of TStream [88],
MorphStream, pushes the idea further and proposes cost-
model guided dynamic transaction decomposition and
scheduling to further improve the system performance.

Optimistic Approach: Optimistic approaches avoid
locking resources by employing timestamps and conflict
detection mechanisms to maintain transaction consistency
at the desired isolation level, aborting and rescheduling
transactions when necessary. These approaches handle
transactions by predicting the order of events or by
speculative execution to improve system performance.
The challenge is to ensure that speculation is accurate and
efficiently manages rollback or recovery when needed.

Golab et al. [37] present a scheduler targeting window
serializable properties, which optimistically executes
window movements and utilizes serialization graph testing
(SGT) to abort any read-only transactions causing read-
write conflicts. A conflict-serializable schedule is achieved
if the precedence graph remains acyclic. They also suggest
reordering read operations within transactions to minimize
the number of aborted transactions. FlowDB/TSpoon [6, 7]



14 Shuhao Zhang et al.

propose an optimistic timestamp-based protocol that
refrains from locking resources and instead uses timestamps
to ensure transactions consistently read or update versions
aligned with the desired isolation level. If this is not feasible,
transactions are aborted and rescheduled for execution.
This approach aims to minimize contention and improve
performance by avoiding lock-based mechanisms while
still maintaining the necessary consistency and isolation
requirements.

Snapshot Isolation Approach: These approaches employ
snapshot isolation to split a stream into a sequence of
bounded chunks and apply database transaction semantics to
each chunk. Processing a sequence of data chunks generates
a sequence of state snapshots. By storing multiple versions
of values as commit and delete timestamps, readers can
access the latest version of a state, ensuring consistency and
isolation among concurrent transactions.

A number of TSP systems employ snapshot isolation [4,
19, 30, 32, 39], aiming to split a stream into a sequence
of bounded chunks and apply the semantics of a database
transaction to each chunk. By putting the operation on a
data chunk within a transaction boundary, a state snapshot is
produced. In this way, processing a sequence of data chunks
generates a sequence of state snapshots. For example,
Gtze and Sattler [39] present a snapshot isolation approach
for TSP. Each state has multiple versions of values,
each stored as a commit timestamp, delete timestamp,
and value. Consequently, readers can access the latest
version of a state using the commit and delete timestamps.
This approach provides consistency and isolation among
concurrent transactions while avoiding the need for locking
mechanisms, which can improve system performance.

3.2.4 Ensuring Delivery Guarantees

In this subsection, we explore various design aspects of TSP
systems that help ensure reliability and delivery guarantees.
We discuss strategies for achieving ACID properties and
streaming properties under failures and their implications
on TSP system design. For a comprehensive survey on
fault tolerance mechanisms in SPEs, refer to [78]. While
modern SPEs usually offer fault-tolerance mechanisms
while ensuring various delivery guarantees, they may not
always fulfil the requirements of TSP due to the combined
need to satisfy ACID and streaming properties.

Achieving ACID Properties: In the event of a failure, TSP
systems generally need to recover all states, including
input/output streams, operator states, and shared mutable
states. This ensures committed transactions remain stable,
while uncommitted transactions do not impact this state.
Transactions that have started, but have not yet been
committed should be undone upon failure and reinvoked

with the correct input parameters once the system is
stable again. This necessitates an upstream backup and an
undo/redo mechanism akin to an ACID-compliant database.

For instance, TSP systems must guarantee atomicity
when updating shared states, even under failures. An
atomic transaction ensures a commit either fully completes
the entire operation or, in cases of failure (e.g., system
failures or transaction aborts), rolls back the database (or
shared states in TSP) to its pre-commit state. Journaling or
logging in database systems mainly accomplish atomicity,
while distributed database systems require additional atomic
commit protocols to ensure atomicity. Regrettably, most
prior works on TSP either do not explicitly mention
their mechanisms to ensure atomicity under failure [6,
88] or rely on mechanisms provided by their storage
systems (e.g., traditional database systems [54]). Making
this more transparent could help users better understand
which properties are not guaranteed when employing a TSP
system in practice.

Achieving Streaming Properties: To satisfy streaming
properties further, the recovered states in TSP systems
should be equivalent to the one under construction when
no failure occurred. Achieving this requires an order-aware
recovery mechanism [72]. However, the commonly adopted
recovery operation in modern SPEs, particularly the parallel
recovery operation, might result in different transactional
states due to the absence of guarantees on the event
processing sequence during recovery. To the best of our
knowledge, there is still no in-depth study on designing
efficient fault tolerance mechanisms for TSP systems.

3.2.5 Implementing State Management

State management is a crucial aspect of transactional stream
processing (TSP) systems, as it enables the coordination
of concurrent transactions, maintains consistency, and
provides fault tolerance [9, 88]. The design space for state
management in TSP systems can be characterized by several
dimensions, such as access scope, storage model, data
manipulation statements, and state management strategies.
Next, we delve into these dimensions and explore their
implications for system design and optimization.

Access Scope: The access scope of state management
ranges from intra-operator to inter-systems. Depending on
the application’s requirements, TSP systems may need to
manage state locally within a processing node or share
state across multiple nodes or even external systems [24,
39]. It is worth noting that when OLTP workloads are
implemented in a TSP system, the access scope of a shared
state is within a transaction, which can be attributed to a
single operator or multiple operators. a) Intra-operator state
management focuses on maintaining state among instances



A Survey on Transactional Stream Processing 15

of a single operator, making it suitable for applications with
localized data access patterns and minimal coordination
requirements [37]. b) Inter-operator state management
involves sharing state across multiple operators within the
same query/system [6, 88]. This approach is particularly
relevant for applications that require coordination among
different operators. c) Inter-system/global state management
extends the scope of state sharing even further, enabling
TSP systems to exchange state information with external
systems, such as other stream processors, databases, or
distributed file systems [53]. This approach allows TSP
systems to leverage the capabilities of external systems,
such as query processing or storage, and can facilitate
seamless integration with existing data processing pipelines.
However, managing state across system boundaries can
introduce additional complexity, latency, and potential
consistency issues.

Storage Models: There are two primary storage models for
implementing state management in TSP systems: relations
and key-value pairs. Each has its trade-offs and implications
for system design and optimization.

a) Relations: In this model, states are represented as
time-varying relations that map a time domain to a finite
but unbounded bag of tuples adhering to a relational schema
[40,54]. This approach leverages well-developed techniques
from relational databases, such as persistence and recovery
mechanisms. Storing states as relations can help minimize
system complexity, especially when a foreign key constraint
is required in TSP [53]. However, incorporating time into
the relational model can add complexity to query processing
and optimization [40].

Representative examples include STREAM, S-Store,
and TStream. STREAM [40] represents the state as a time-
varying relation, mapping a time domain to a finite, but
unbounded bag of tuples adhering to the relational schema.
To treat relational and streaming data uniformly, STREAM
introduces two operations: To Table to convert streaming
data to relational data, and To Stream to convert relational
data to streaming data. S-Store [54] does not implement
its own state management component, but instead relies
on H-Store [74] to ensure the transactional properties of
shared states represented as relations. TStream [88] uses the
Cavalia relational database [86] to support the storage of
shared states.

b) Key-Value Pairs: In this model, states are represented
as key-value pairs, which simplifies the design of TSP
systems [9, 24]. This approach is suitable for scenarios
that mainly require select and update statements for
manipulating shared states during stream processing [7,51].
However, it may not be the best choice for applications
that require more complex data manipulation operations or
constraints, such as foreign key constraints [53].

Representative examples include MillWheel [9],
Flink with RocksDB, AIM (Analytics in
Motion) [20], FlowDBMS/TSpoon [6, 7], and
TStream/MorphStream [51, 88]. MillWheel [9] maintains
state as an opaque byte string on a per-key basis, with users
implementing serialization and deserialization methods.
The persistent state is backed by a replicated and highly
available data store, such as Bigtable [28] or Spanner [34],
ensuring data integrity and transparency for the end user.
Flink [24] relies on an LSM-based key-value store engine
called RocksDB [1] to support shared queryable state.
Götze and Sattler [39] also adopt a key-value store for
transactional state representation, using multi-version
concurrency control, where each state (i.e., key) has
multiple commit timestamps, delete timestamps, or values.

AIM [20] represents state in a distributed in-memory
key-value store, where nodes store system state as
horizontally-partitioned data in a ColumnMap layout. The
Analytics Matrix system state provides a materialized
view of numerous aggregates for each individual customer
(subscriber). When an event arrives in an SPE, the
corresponding record in the Analytics Matrix is updated
atomically. In FlowDBMS/TSpoon [6, 7], a key-value store
is employed, with the state maintained by a special type of
stateful stream operator called the state operator. All state
access requests must be routed to and subsequently handled
by state operators defined in the application.

Data Manipulation Statements: TSP systems need to
define and support different data manipulation statements
employed in applications that constrain both system design
and potential optimizations. These statements may include
operations such as insert, update, delete, and query, which
must be executed efficiently and consistently in the context
of transactional stream processing.

Storing shared states as relations could be a reasonable
choice of system design when applications require insert
(I) or delete (D) statements and need to maintain foreign
key constraints, such as in streaming ETL [53]. However,
when applications only need select (S) and update (U)
statements for manipulating shared states during stream
processing, storing shared states as vanilla key-value pairs is
sufficient and simplifies the design of TSP systems. Specific
optimizations should be adopted by the TSP systems
according to application needs.

State Management Strategies: The choice of state
management strategy can significantly impact system
performance, fault tolerance, and scalability [9, 24, 74].
There are three main strategies for managing state in TSP
systems: a) In-memory state: This strategy maintains state
within the processing nodes’ memory, enabling low-latency
access. However, it can be limited by available memory and
may require replication and distributed transactions for fault



16 Shuhao Zhang et al.

A
C

B

event
ordering

operator ordering

Fig. 4: Example of timestamp assignment dilemma.

tolerance and consistency guarantees [20, 88]. b) External
state stores: In this strategy, state is stored in external
systems, such as transactional databases or distributed
key-value stores with transactional support [1, 39]. This
approach allows for improved fault tolerance, consistency
guarantees, and scalability but may introduce additional
latency [28,34]. c) Hybrid state management: This approach
combines the advantages of in-memory state and external
state stores, using in-memory caching to minimize latency
and external transactional storage for fault tolerance,
consistency guarantees, and scalability [6, 7].

Remark 3 (Failure of Concurrency Control Protocols)
Conventional concurrency control (CC) protocols, widely
used in OLTP database systems, fails to guarantee the
properties of TSP Systems. To illustrate why, we use
conventional timestamp-ordering concurrency control (T/O
CC) as an example [16], with discussions also found in prior
work [84]. Let txn1 = write(k1,v1) and txn2 = read(k1) be
two distinct transactions. For simplicity, assume that only
these two transactions are in the system, and that events
are parallel processed. Suppose that txn2 is generated and
processed by the system earlier.

If txn2.ts > txn1.ts, then both transactions will be
successfully committed. However, since txn2 is processed
earlier, it will read the old state value of k1, violating the
event order constraint, leading to a serial order of txn2 →
txn1. On the other hand, if txn2.ts < txn1.ts, then txn2 will
be successfully committed, but txn1 will be aborted since
the writes come too late, making the undo of an externally
visible output or action unacceptable in TSP applications.

Similarly, other conventional CC protocols may result in
either the wrong serial order or the need to abort one of the
transactions, leading to incorrect serial order upon restart. In
other words, conventional CC protocols are not yet ready for
such event-driven transaction execution.

Remark 4 (Timestamp Assignment Dilemma) In TSP
systems, aligning transaction timestamps with the
triggering events is a reflection of external consistency
or linearizability in distributed systems. This alignment
ensures proper ordering but can lead to dilemmas. The
dilemma, illustrated in Figure 4, arises when transactions

are generated by both external and internal events, such as
operator outputs. Consider a scenario involving operators
A, B, and C processing events and generating new
transactions. Events are parallel processed and txnea and
txn′ea can infinitely wait for each other to be committed,
leading to a deadlock due to conflicting ordering constraints.
Two potential solutions to this dilemma are: 1) enforcing
additional ordering constraints between operators, or 2)
diversifying timestamps for generated events. However,
these solutions present challenges, as implementing strong
consistency like linearizability may affect latency, and a
generalized solution to this dilemma remains unresolved.

3.3 Technologies Employed in TSP Implementation

This section delves into the practical aspects of
implementing TSP systems, such as the choice of
programming languages and APIs, system architectures,
and the integration of various components to achieve a
well-rounded TSP system. We also discuss performance
metrics and evaluation criteria for TSP systems.

3.3.1 Languages and APIs

TSP systems should provide user-friendly and expressive
languages that can easily define complex transactions,
data manipulations, and processing logic over data streams
while addressing aspects such as ordering properties,
state management, and delivery guarantees. However, TSP
systems do not yet have a standard transaction model or
language, which complicates the selection of appropriate
languages and APIs. Let us examine both declarative
languages and functional languages in turn.

Declarative Languages: The STREAM system [10, 40,
56] supports a declarative query language called CQL
(Continuous Query Language), which is designed to
handle both relational data and data streams. Coral8’s [2]
continuous computation language (CCL) has a SQL-like
syntax and supports both data streams and event streams.
Franklin et al. [35] introduced TruSQL, a relational stream
query language that fully integrates stream processing into
SQL, including persistence. Although declarative languages
like SQL are indeed utilized in relational databases to
manage transactions, TSP presents unique challenges such
as preserving stream ordering property, which might not be
directly addressed by conventional declarative languages.
Extensions or modifications to these languages may be
necessary to provide guarantees and facilitate correct
interaction among stream queries in the context of TSP.

Functional Languages: Functional languages [9],
influenced by MapReduce-like APIs, are an alternative
to declarative languagues for expressing state abstractions



A Survey on Transactional Stream Processing 17

and complex application logic than SQL-like declarative
languages. Streaming systems like Flink embed
functional/fluent APIs into general-purpose programming
languages, allowing users to define custom dataflows akin
to the Aurora system [5]. This design is also present in TSP
systems, such as FlowDBMS and TStream [6,7]. Functional
languages offer greater flexibility and expressiveness,
enabling custom processing logic and leveraging existing
functional programming paradigms. In the context of
expressing transactions, they provide fine-grained control
but may introduce additional complexity and a steeper
learning curve. In contrast, declarative languages simplify
query formulation but may lack the nuances required for
TSP-specific transaction handling. Further research is
needed to explore these trade-offs.

3.3.2 System Architectures

Given the properties and requirements discussed, TSP
applications usually necessitate the use of SPEs in
conjunction with data storage and analysis frameworks,
such as database management systems (DBMSs), to create
software architectures that integrate data storage, retrieval,
and mining. Three approaches can be employed to construct
a TSP system: 1) extending a DBMS, 2) embedding a
DBMS in an SPE, and 3) composing a DBMS and an
SPE. The choice of architectural approach for TSP systems
depends on the specific requirements and constraints of
the stream processing application. Each approach offers a
unique set of trade-offs and considerations, making them
more or less suitable for different use cases. Next, we
explore each approach in turn.

Extending a DBMS: Extending a DBMS for TSP
involves incorporating stream processing functionality
into traditional DBMSs. By doing so, these systems aim
to provide a unified platform for stream processing and
traditional database management tasks while maintaining
the strong consistency, isolation, and fault tolerance
properties of traditional databases. Since state is managed
directly within the DBMS, it can be shared across queries
and operators, and provide durability and consistency.
Since transactions are supported in the underlying DBMS,
it offers strong consistency guarantees. This setup is
particularly advantageous in applications, such as financial
systems, where the integrity and correctness of the data are
paramount.

Notable examples of this approach include
DataCell [49], MaxStream [18], Truviso Continuous
Analytics system (TruCQ) [44], and S-Store [54]. While
extending a DBMS for TSP offers a unified platform,
it also has limitations, such as difficulty in efficiently
supporting native or hybrid stream processing applications
and challenges in handling real-time processing and stateful

operations. Consequently, alternative approaches might be
more suitable for specific TSP applications.

Advantages of this approach include: a) leveraging
the existing features and infrastructure of a DBMS
for transactional support, query processing, and data
management; b) simplifying the system architecture by
integrating stream processing functionality within the
DBMS, reducing the need for additional components or
interfaces; and c) potentially providing strong consistency
guarantees by directly utilizing the transactional
mechanisms of the underlying DBMS. Disadvantages
include: a) potentially being less flexible and adaptable to
the specific requirements of stream processing applications,
as it inherits the architectural constraints of the underlying
DBMS; and b) possibly having limited scalability and
performance due to the constraints of the underlying
DBMS, which may not be designed for high-velocity,
high-volume data streams.

Embedding a DBMS in an SPE: The embedding approach
involves integrating an SPE with an embedded key-value
store or DBMS to manage state, provide transactional
support, and handle storage capabilities. This method
enables stream processing systems to take advantage of
the features of the embedded DBMS while maintaining
the flexibility and efficiency of stream processing. In this
approach, state management occurs within the embedded
DBMS, which can also be shared across queries and
operators. However, the sharing model depends on the
specific integration between the SPE and embedded DBMS.
Durability can be achieved via the underlying DBMS.

Examples of this approach include Aurora [5] and its
successor Borealis [4], and TStream [88] and its successor
MorphStream [51]. Embedding a DBMS within an SPE
allows for various transactional models over streams but also
introduces challenges such as integration complexity and
potential performance bottlenecks or resource contention
issues. This approach is better suited for applications that
require a balance between the performance and scalability
of stream processing and the transactional support and data
management capabilities of a DBMS. It can be particularly
useful when the stream processing workload is dynamic
and demands efficient state management and transactional
support. Examples of such applications include real-time
analytics, social network analysis, and large-scale data
processing tasks like log analysis or clickstream processing.

Advantages of this approach include: a) enabling TSP
systems to benefit from the features of both the SPE
and the embedded DBMS, combining their strengths
and providing a unified platform for stream processing;
and b) offering improved performance and scalability
by facilitating concurrent data processing and state
management, as well as leveraging the distributed nature of
modern SPEs. Disadvantages of this approach include: a)



18 Shuhao Zhang et al.

OLTP Database

stream input
SP1 SP2

...
...

SQL SQL

Stream query expressed as
a list of store-procedures

SP: Stored Procedure
triggers

(a) Extending a DBMS

Access ManagementStore

stream input
Stream Processing Engine

state access

(b) Embedding a DBMS in a SPE

Database

stream input

Stream Processing Engine

output

Systems Federator

...

Client

(c) Composing a DBMS and an SPE

Fig. 5: Illustrations of alternative system architectures of TSP systems.

careful integration of the embedded DBMS with the SPE
may increase complexity and impact overall system latency;
and b) the performance of the embedded DBMS might be
influenced by the stream processing workload, potentially
causing bottlenecks or resource contention issues. These
problems can be mitigated by carefully tuning the embedded
DBMS for the specific use case.

Composing a DBMS and an SPE: The composing approach
involves using both a DBMS and an SPE in conjunction
while keeping them as separate components. This method
offers flexibility, adaptability, and optimizability for various
application requirements. The SPE primarily focuses
on processing streams, while the DBMS handles state
management, transactional support, and storage capabilities.
Sharing state across queries and operators depends on the
communication and synchronization between the SPE and
DBMS. Durability can be achieved via the underlying
DBMS, but the communication latency between the
components can impact performance.

Examples of this approach include Storage Manager
for Streams (SMS) [17]. Although composing a DBMS
and an SPE is more complex than other approaches
and introduces additional challenges, such as performance
overhead and latency in communication between the
systems, it provides a flexible and scalable solution for
building TSP systems that can leverage the strengths
of both components. The composing approach is well-
suited for applications requiring high levels of flexibility,
adaptability, and performance, as well as the ability to
separately optimize and customize the SPE and the DBMS
components. It is particularly useful for applications with
diverse and evolving requirements, as it enables the
system to be easily adapted or extended to accommodate
new functionality or optimizations. Examples of such
applications include IoT systems, sensor networks, and
other data-intensive applications with varying processing
and storage requirements.

Advantages of this approach include: a) offering the
most flexibility and adaptability by allowing separate
optimization and customization of the SPE and the
DBMS, enabling tailored solutions for specific application

requirements; and b) providing better scalability and
performance by distributing workloads across multiple
systems and enabling parallelization of processing tasks.
Disadvantages of this approach include: a) demanding
additional effort to ensure integration correctness, which
may increase development and maintenance complexity.
This challenge can be mitigated by using standardized
interfaces and middleware for communication between
the SPE and the DBMS; and b) potentially exhibiting
higher latency due to the need for communication and
synchronization between the SPE and the DBMS. However,
this can be mitigated by optimizing communication
protocols and leveraging caching techniques to minimize
data exchange overhead.

3.3.3 Performance Metrics of TSP Systems

In this subsubsection, we discuss the key performance
metrics and evaluation criteria for transactional stream
processing systems. These metrics help in understanding the
efficiency and effectiveness of various TSP architectures, as
well as in identifying the trade-offs associated with different
system designs.

Throughput: Throughput is a measure of the number of
transactions or events processed per unit of time. High
throughput is desirable in TSP systems, as it indicates
the system’s capability to handle large volumes of data
efficiently. Throughput can be affected by factors such
as system architecture, resource allocation, and workload
characteristics. TSP systems should be designed to
maximize throughput while maintaining other performance
guarantees, such as low latency and correctness.

Latency: Latency is the time taken for a transaction
or event to be processed by the TSP system, from
the moment it enters the system until it is completely
processed. Low latency is crucial for TSP systems, as
many real-time applications require timely processing of
data. Latency is influenced by factors such as system
architecture, data processing complexity, and resource
utilization. TSP systems should be designed to minimize



A Survey on Transactional Stream Processing 19

latency, ensuring that transactions are processed quickly
without compromising other performance aspects.

Scalability: Scalability measures the ability of a TSP
system to handle increasing amounts of data and concurrent
transactions without significant performance degradation.
As the volume of data and the number of concurrent
transactions grow, TSP systems must be able to scale to
maintain low-latency access and fault tolerance. Techniques
such as data sharding, partitioning, and replication can
be employed to distribute the shared mutable state across
multiple nodes, providing horizontal scalability.

Correctness Guarantee: Correctness guarantee in TSP
systems refers to the extent to which a system can ensure
data consistency and maintain the required transaction
properties, as discussed in subsection 3.1, in the presence
of failures, network delays, or other factors. This includes
support for various isolation levels, consistency models,
and durability guarantees. TSP systems should provide the
appropriate level of correctness guarantees based on the
specific requirements of the stream processing application.

• Isolation Levels: TSP systems should maintain proper
isolation levels (e.g., serializable, snapshot isolation,
read committed) to ensure that concurrent transactions
do not interfere with each other and result in incorrect
data processing.

• Consistency Models: Different TSP systems may adopt
different consistency models (e.g., strong consistency,
eventual consistency, or causal consistency) to provide
a balance between data correctness and system
performance. The choice of consistency model should
be aligned with the application requirements and the
tolerance for temporary inconsistencies.

• Durability Guarantees: TSP systems should ensure
that once a transaction is committed, its effects are
permanently recorded, even in the presence of failures.
This can be achieved through techniques such as
logging, checkpointing, and replication.

Balancing correctness guarantees with other
performance metrics, such as throughput and latency,
is crucial for achieving optimal performance in TSP
systems. It is essential to recognize that the choice of the
appropriate correctness guarantee is highly dependent on
the application’s requirements and the nature of the data
being processed. For some applications, strong consistency
and high isolation levels might be necessary, while for
others, relaxed consistency models and lower isolation
levels might be sufficient.

4 Systems Offering Transactional Stream Processing

We summarize six notable transactional stream processing
(TSP) systems in Table 2. These TSP systems showcase

the various approaches used to address the challenges in
transactional stream processing. Each system offers unique
features and each has made some design choices that cater
to different application requirements. Let us explore each of
these systems in turn.

STREAM: STREAM [40] is an early TSP system that
introduces a unified framework for continuous query
processing over data streams and relations. It supports ACID
properties and offers at-least-once delivery guarantees.
STREAM’s design approach is based on a combination
of a sliding-window model and a relational model for
efficiently processing continuous queries. It employs a
language called CQL (Continuous Query Language) to
express queries, which can be translated into efficient query
plans for execution. STREAM supports ACID properties
and at-least-once delivery guarantees. The system focuses
on ordering properties and state management properties by
using windows and panes for efficient state handling. The
architecture of STREAM is centered around a relational
model, which simplifies the integration of stream processing
and transaction processing.

Botan et al.: Botan et al. [19] proposed a TSP system
that focuses on a pipelined architecture for efficient parallel
execution. The system supports ACID properties, but
does not explicitly specify the delivery guarantees. Its
design approach is centered around per-tuple transactions,
which ensures strong consistency guarantees and high
isolation. Botan et al. also address the challenges
of implementing transactional guarantees in a stream
processing environment, such as handling failures and
maintaining consistency among shared mutable state.
They propose techniques for addressing these challenges,
including state replication, checkpointing, and recovery
mechanisms. The system adheres to ACID properties, while
delivery guarantees are not explicitly mentioned.

S-Store: S-Store [54] is a state-transaction TSP system that
builds upon H-Store, a distributed, main-memory relational
database system. It extends H-Store with stream processing
capabilities and supports ACID properties. S-Store offers
various delivery guarantees, such as exactly-once and
at-least-once processing semantics. The system employs
a partitioning mechanism for efficient parallel execution
of stream processing tasks. In S-Store, each transaction
is represented as a stored procedure, which can be
invoked by incoming data streams. These stored procedures
manipulate shared mutable states within the context
of ACID-compliant transactions, ensuring consistency
and isolation among concurrent tasks. S-Store supports
ACID properties, exactly-once and at-least-once delivery
guarantees, and employs a partitioning mechanism for
distributed and parallelized execution. S-Store also focuses



20 Shuhao Zhang et al.

Table 2: Key characterization of Six Transactional Stream Processing Systems

System Unique Features Properties Design Aspects Implementation Details
STREAM first unified framework ACID, ordering, at-least-once unified transaction, lock-based

approach
embedding a DBMS in an SPE

Botan et al. pipelined architecture ACID, ordering unified transaction, per-tuple
transactions

embedding a DBMS in an SPE

S-Store static partitioning ACID, ordering, exactly-once,
at-least-once

state-transaction, batch event and
operator-based1triggered

extending a DBMS

Braun et al. in-database stream
analytics

ACID, ordering state transaction, per-tuple
transactions

extending a DBMS

FlowDB transactional state
management on Flink

ACID, ordering, exactly-once state transaction, user-defined
transaction boundary

embedding a DBMS in an SPE

TStream
/MorphStream

dual-mode scheduling ACID, ordering, exactly-once state transaction, per-tuple
transactions

embedding a DBMS in an SPE

on fault tolerance techniques, including state replication,
checkpointing, and recovery.

Braun et al.: Braun et al. [20] presented a TSP system
that focuses on in-database analytics by combining event-
processing and real-time analytics within the same database.
The system supports ACID properties. However, the
delivery guarantees are not explicitly specified. Its design
approach is centered around in-database stream processing,
which allows the system to efficiently handle complex event
processing and real-time analytics tasks without requiring
external tools or components. The system supports ACID
properties, while delivery guarantees are not specified. The
system also emphasizes performance metrics and evaluation
of TSP systems, showcasing its efficiency in handling large
volumes of data and complex analytics tasks.

FlowDB: FlowDB [6] is a TSP system that integrates
stream processing and consistent state management. It
supports ACID properties and provides exactly-once
delivery guarantees. The system’s design approach is based
on a state-transaction model, which allows for efficient
management of shared mutable state. FlowDB features a
language called FQL (Flow Query Language) for expressing
continuous queries and supports the integration of custom
stream processing operators and user-defined functions.
FlowDB supports ACID properties, exactly-once delivery
guarantees, and efficient state management. It also addresses
fault tolerance and durability by employing checkpointing
and recovery mechanisms.

TStream/MorphStream: TStream [88] and its successor
MorphStream [51] are TSP systems that emphasize efficient
concurrent state access on multicore processors. These
systems support ACID properties and offer exactly-once
delivery guarantees. TStream’s design approach includes
a unique dual-mode scheduling strategy that combines
transactional and parallel modes, to enable the system to
maximize parallelism opportunities offered by modern

1 Transactions are triggered by the stored-procedure in each stream
operator in S-Store.

multicore architectures. TStream’s dynamic restructuring
execution strategy further improves concurrency by
adapting the execution plan based on observed state access
patterns during runtime.

5 Applications/Scenarios Leveraging TSP

TSP arises in varying domains, such as healthcare [84],
the Internet of Things (IoT) [19], and e-commerce [6]).
Table 3 summarizes thirteen scenarios. Each application
encompasses diverse features, transactional models, and
implementations of TSP systems. We can categorise
them into four scenarios: stream processing optimization,
concurrent stateful processing, stream & DBMS integration,
and recoverable stream processing.

5.1 Stream Processing Optimization

Several works have proposed the consistent management
of shared mutable states to optimize stream processing.
Below we discuss these works in the context of stream
processing optimization across four use cases: sharing
intermediate results, multi-query optimization, deterministic
stream operations, and prioritizing query scheduling.

Sharing Intermediate Results. In the STREAM
system [40], nearly identical states, or synopses, within a
query plan are kept in a single store to reduce storage
redundancy. Operators access their states exclusively via a
stub interface. As operators are scheduled independently,
they require slightly different data views, so STREAM
employs a timestamp-based execution mechanism for
correctness. Ordering properties are crucial in this scenario.
Event ordering constraints maintain the data stream order,
while operation ordering constraints ensure transaction
operations’ order. ACID properties maintain the correctness
and consistency of shared mutable states. State management
properties require read-write state types and inter-operator
access scope for managing shared states among different
operators.



A Survey on Transactional Stream Processing 21

Scenario Ordering ACID State Management Reliability
Stream Processing Optimization
1 Sharing Intermediate Results event, operation ACID read-write, inter-operator consistency
2 Multi-Query Optimization event ACID read-write, global delivery guarantee
3 Deterministic Stream Operations event ACID read-write, intra & inter-operator -
4 Prioritizing Query Scheduling event ACID read-write, inter-query delivery guarantee
Concurrent Stateful Processing
5 Ad-hoc Queryable States event, operation ACID read-write, global consistency, durability
6 Concurrent State Access event, operation ACID read-write, intra & inter-operator consistency, durability
7 Active CEP event ACID read-write, inter-Query delivery guarantee, durability
Stream and DBMS Integration
8 Streaming Ingestion event ACID read-write, global delivery guarantee, durability
9 Streaming OLTP operation ACID read-write, per-transaction consistency, durability
10 Streaming OLAP event (optional) snapshot read-write, global delivery guarantee, fault tolerance
Robust Stream Processing
11 Shared Persistent Storage operation ACID read-write, global consistency, durability
12 Transaction Identifier operation ACID read-write, global consistency, durability
13 Fault Tolerance Outsourcing operation ACID read-write, global fault tolerance, durability

Table 3: Summary of application scenarios and their demands of TSP properties.

Multi-Query Optimization. Ray et al. [65] introduced
the SPASS (Scalable Pattern Sharing on Event Streams)
framework, which optimizes time-based event correlations
among queries and shares processing effectively. The
optimizer identifies a shared pattern plan, maintaining an
optimality bound. The runtime then uses shared continuous
sliding view technology for executing the shared pattern
plan. A sequence transaction model on shared views defines
the correctness of concurrent shared pattern execution.
SPASS doesn’t modify existing states but selects, inserts,
and deletes shared states like sliding views. Ordering
properties are crucial for maintaining the correct order
of pattern queries. Event ordering constraints preserve
data stream order, while operation ordering constraints
are less important as sharing is among queries. ACID
properties maintain consistency and correctness of shared
states like sliding views. State management properties
need read-write state types and global access scope for
managing shared states among pattern queries. However,
some implementation details are not specified in the original
paper (e.g., sliding views’ data layout, key used for
searching shared sliding views).

Deterministic Stream Operations. Handling out-of-
order streams is often a performance bottleneck due to
the conflict between data parallelism and order-sensitive
processing. While data parallelism improves throughput by
processing events concurrently, it can cause events to be
handled out-of-order. Most solutions use locks or non-lock
algorithms like sorting [89]. Brito et al. [21] proposed an
interesting non-lock approach using software transactional
memory (STM) for stream processing. They model
processing a batch of input data at order-sensitive operators
as a transaction and pre-assign commit timestamps,
effectively imposing order. Events received out-of-order
or conflicting are processed in parallel optimistically but

aren’t output until all preceding events are completed,
ensuring consistent operator states. Ordering Properties
are crucial for managing out-of-order streams, with event
ordering constraints needed to maintain data stream order.
Operation ordering constraints are less relevant. ACID
Properties maintain the correctness and consistency of
shared mutable states, especially when handling out-of-
order and conflicting events. State Management Properties
require read-write state types and intra- and inter-operator
access scope for managing shared states within and among
different operators.

Prioritizing Query Scheduling. Handling potentially
infinite data streams requires continuous queries with
window constraints to limit tuple processing. Most
implementations execute sliding window queries and
window updates serially, implicitly assuming a window
cannot be advanced while accessed by a query. Golab
et al. [37] argue that concurrent processing of queries
(reads) and window-updates (writes) is necessary for
prioritized query scheduling to improve answer freshness.
They model window updates and queries as transactions
with atomic sub-window reads and writes, which can
lead to read-write conflicts. Golab et al. [37] prove
traditional conflict serializability is insufficient and define
stronger isolation levels restricting allowed serialization
orders following event ordering. Ordering Properties are
crucial for prioritizing query scheduling, with event ordering
constraints ensuring correct data stream order. ACID
Properties maintain correctness and consistency of shared
mutable states when handling concurrent reads and writes.
State Management Properties require read-write state types
and inter-query access scope for managing shared states
among different queries and window updates.



22 Shuhao Zhang et al.

5.2 Concurrent Stateful Processing

In this scenario, application workloads consist of both
ad-hoc and continuous queries, which may access and
modify common application states for future reference [22].
We will discuss three representative applications in the
context of concurrent stateful processing: ad-hoc queryable
states, concurrent state access, and active complex event
processing, focusing on the properties of TSP required by
each application.

Ad-hoc Queryable States. Ad-hoc queries, or snapshot
queries, can be submitted to an SPE anytime, executed
once, and provide insights into the system’s current
state. They may be used to obtain further details in
response to continuous query result changes. In Botan et
al.’s example [19], real-time sensors generate temperature
measurements to ensure temperature-sensitive devices
operate within design specifications. When a temperature
reading falls out of the operating range, it triggers an alert.
The SPE must ensure table updates and stream temperature
readings are executed in the correct order, demanding
event and operation ordering constraints. To maintain the
specifications table’s integrity and prevent data corruption,
ACID Properties are necessary. The state is read-write, as
the table needs updates, and the access scope is global,
as all incoming temperature readings need to probe the
table. Delivery Guarantees and Fault Tolerance are vital
for ensuring accurate temperature reading processing and
system recovery from potential failures.

Concurrent State Access. In applications like Ververica
Streaming Ledger [3] (SL), operators like parser, deposit,
transfer, and sink may need to share access to states, such
as account and asset data. To process transactions correctly
and maintain data consistency, event and operation ordering
constraints are crucial. ACID Properties are necessary to
ensure shared state accuracy and prevent data corruption
during concurrent access. The state is read-write, as the
account and asset data need updates, and the access scope
includes intra and inter-operator, as multiple operators and
their replica instances access and modify the shared stat.
Delivery Guarantees, Fault Tolerance, and Durability are
critical for maintaining accurate and consistent transaction
processing. CAP Theorem considerations must be taken into
account when designing the system to balance consistency,
availability, and partition tolerance.

Active Complex Event Processing. In the realm of
stream processing, active complex event processing is a
method that continuously monitors and analyzes a series
of real-time events to detect certain patterns or sequences.
Wang et al. [84] have applied this concept to a hospital
infection control application. The system uses sensor
devices to generate real-time data on healthcare workers’
(HCWs) behaviors such as “exit”, “sanitize”, and “enter”.

These events are then analyzed by pattern queries that
aim to detect any violations of hospital hygiene rules. The
status of all HCWs, whether static or dynamic, is stored
in tables. In this application, it is crucial to maintain the
correct order of events and handle concurrent accesses
and updates during stream execution. This requires event
ordering constraints and ACID Properties to ensure data
consistency and prevent conflicts. The state management
in this scenario involves read-write states with inter-query
access scope, as multiple pattern queries may read or
update the tables concurrently. Reliability and delivery
guarantees are essential for accurately and consistently
detecting violations of hospital hygiene rules.

5.3 Stream and DBMS Integration

The integration of SPEs with DBMSs is becoming
increasingly important [75]. Scenarios such as stream data
ingestion (i.e., Streaming Ingestion), implementing OLTP
queries in alternative ways (Streaming OLTP), and mixed
stream and analytic queries (Streaming OLAP) can be well
supported by TSP systems. In the following sections, we
discuss each of these scenarios and their requirements
concerning TSP properties.

Streaming Ingestion. Streaming ingestion is an
essential process for organizations handling large volumes
of data, as it enables more timely access to incremental
results compared to traditional batch ingestion. This
approach processes smaller microbatches throughout the
day, which requires proper management of ordering and
state properties. A notable example by Meehan et al. [53]
involves self-driving vehicles, where the value of sensor
data decreases over time. In this case, timely processing and
storage of time series data are critical for making valuable
decisions. The authors adapt TPC-DI [64], a standard
benchmark for data ingestion, to assess streaming ingestion
effectiveness while considering new data dependencies
introduced by breaking large batches into smaller ones. In
this scenario, maintaining the correct order of time series
data is crucial, necessitating event ordering constraints.
ACID properties are required to ensure the correctness and
consistency of ingested data, especially with high sample
rates and large data volumes. Read-write state types are
needed for efficient management and persistence of ingested
data. Delivery guarantees are essential for processing and
persisting ingested data accurately and consistently in near
real-time. Additionally, durability is necessary to ensure
data availability for analysis and decision-making, even after
a system failure or outage.

Streaming OLTP. Streaming OLTP addresses
traditional OLTP workloads using streaming queries.
Chen and Migliavacca [29] propose StreamDB, a TSP-
based system. Streaming OLTP requires ACID Properties,



A Survey on Transactional Stream Processing 23

State Management Properties (e.g., database partitioning),
and fault tolerance. StreamDB uses three operators in a
streaming query: 1) Source operator, receiving transactions
and sending them to downstream data operators; 2) Data
operator, managing a portion of a database, executing
transactions, and producing results; 3) Sink operator,
receiving transaction responses. StreamDB reduces lock
contention by distributing the database among multiple
data operators. However, creating an optimal stream
dataflow graph for diverse OLTP workloads remains
an open question. In this scenario, operation ordering
constraint is crucial for correct transaction processing
and minimizing lock contention. ACID properties ensure
database correctness and consistency during transaction
processing. Read-write state types are required for
managing the database and transactions, while maintaining
consistency. Consistency, Durability, and Fault Tolerance
are vital for accurate and consistent transaction processing
and for maintaining database consistency even after system
failures or outages.

Streaming OLAP. Organizations often need real-time
analysis of data streams for immediate decision-making,
and several related applications have been described in
the literature [20, 39, 70]. The Huawei-AIM workload [20]
features a three-tier architecture with storage, an SPE,
and real-time analytics (RTA) nodes. RTA nodes push
analytical queries to storage nodes, merge partial results,
and deliver final results to clients. To meet the service
level objective (SLO), a consistent state (or snapshot)
must not be older than a certain bound. In this scenario,
event ordering constraints ensure correct analytical query
processing. ACID properties can be relaxed (e.g., snapshot
isolation) to maintain data correctness and consistency.
Read-write state types manage the database and ensure
the consistent state meets the SLO. Delivery Guarantees,
Consistency, Durability, and Fault Tolerance ensure accurate
query processing, data persistence, and system recovery
from failures.

5.4 Robust Stream Processing

In addition to performance requirements such as scalability
and low latency, many critical streaming applications
demand SPEs to recover quickly from failures [73].
Consequently, considerable effort has been dedicated to
achieving fault tolerance in SPEs. We discuss previous
attempts to employ transaction-like concepts to ensure
high availability and fault tolerance in stream processing,
focusing on their demands for properties of TSP discussed
in Section 3.1.

Shared Persistent Storage. MillWheel [9] uses an
event-driven API for stateful computations and stores input
and output data persistently. It relies on remote storage

systems like BigTable [27] for managing state updates
and handling fault tolerance through data replication. This
relates to Durability in ACID properties and Reliability
and Delivery Guarantees. MillWheel ensures Atomicity
by encapsulating all per-key updates in a single atomic
operation. While it enforces operation ordering constraints,
strict event ordering constraints are not provided. State
Management Properties are vital in MillWheel due to its
dependence on shared persistent storage.

Transaction Identifier. Trident’s “transactional
topology” [52] processes small batches of tuples as a
single operation and assigns unique transaction identifiers
(TXID), relating to Ordering Properties. TXID, logged
in external storage along with operator state, addresses
Atomicity and Durability in ACID properties. If TXID
mismatch occurs, a batch must be resubmitted, requiring
strict transaction processing ordering (operation ordering
constraint) and potentially limiting throughput. State
Management Properties are essential in this approach, as
it depends on read-write states. Trident provides strong
Delivery Guarantees and Fault Tolerance but may lose
intermediate results during failures due to disregarding
buffered input states.

Fault Tolerance Outsourcing. Ishikawa et al. [42]
propose integrating fault tolerance into an OLTP engine
for data stream processing. This involves backing up
data streams in an in-memory database system instead of
a file system, addressing Durability in ACID properties
and Reliability and Delivery Guarantees. It enforces
operation ordering constraints, similar to H-Store’s state
partitioning transaction processing. However, outsourcing
fault tolerance can strain the remote store during data spikes,
potentially impacting other applications sharing the store.
This approach also requires CAP Theorem considerations,
as the choice of an in-memory database system might
involve trade-offs between consistency and availability.

Remark 5 (TSP is not just nice to have, but sometimes a
must) By employing modern SPEs, existing workarounds,
such as using external databases to store shared application
states, can lead to significant additional programming
effort [84], poor performance [54], and even incorrect
results [25, 37]. This problem is exacerbated if more
complex shared mutable state storage and retrieval queries,
such as range look-ups are further required. In contrast,
TSP systematically manages concurrent accesses to shared
application states with transactional correctness. This even
leads TSP to have the potential of better support for
traditional database workloads (i.e., OLTP and OLAP) as
well.

Remark 6 (TSP-based applications have diverse
requirements) Some TSP-based applications do not require
insertion and deletion operations at all, while others do not



24 Shuhao Zhang et al.

need to update shared mutable states. Also noteworthy is
that transactional dependency is rare among applications,
which means that in most cases, the input parameters in a
transaction are predetermined from the triggering events.
Targeting a narrowed application domain, a TSP system can
take advantage of these diverse requirements to simplify
its design and improve system performance. To date, there
is no standard benchmark for TSP systems [76], which
must include comprehensive performance metrics, diverse
workload features, and meaningful application scenarios.
The applications that we list in Table 3 may serve as a
starting point for the construction of a standard benchmark.
However, more applications may need to be included,
arranged according to their particular application’s features.

6 Research Outlook

In this section, we offer a perspective on future research
directions of TSP.

6.1 Novel Applications

The rise of IoT generates real-time data that needs
immediate processing. Traditional big data applications
were designed for large static datasets, but modern
applications demand more. We foresee novel streaming
applications benefiting from TSP solutions as the range of
applications served by SPEs widens. Current research,
like NebulaStream [87], explores systems meeting
these requirements. We discuss various application
areas, including online machine learning/stream mining,
mixed batch/stream transactional workloads, streaming
materialized views, and cloud applications.

Optimization for Stateful Stream Processing.
Shahvarani and Jacobsen’s IBWJ [68] accelerates sliding
window joins by using a shared index data structure,
reducing redundant memory access and improving
performance. As new tuples arrive, the index structure is
updated, raising concurrency control issues. Shahvarani et
al. [68] propose a low-cost concurrency control mechanism
for high-rate update queries. A TSP system could naturally
handle this concurrency problem, providing durability
when required. Despite its potential, we are unaware of any
practical implementation of this approach.

Online Machine Learning/Stream Mining. The rising
demand for data stream analysis necessitates online learning
and mining. Current efforts support continuous queries
(CQs) referencing non-streaming resources like databases
and ML models [60]. Model-based streaming systems,
such as anomaly detectors, require regular model updates
without significantly increasing operational costs [9]. Due
to the lack of transactional support in traditional SPEs,

implementing emerging streaming learning and mining
algorithms can be challenging [66]. Although existing
batch-based ML training (like TensorFlow) may not need to
care for inconsistencies in the state they handle, a streaming
ML scenario may prohibit such inconsistencies as each
input data may be allowed to be used, up to a limited
threshold, and any inconsistency may lead to significantly
lower training quality. It thus remains an interesting future
work to study how those novel training and mining use cases
can be supported efficiently in TSP systems, which bring
features, such as elastic scaling, fault tolerance guarantees,
and shared state consistency to users, even at the virtual
space [57].

Mixed Batch/Stream Transactional Workloads.
Many enterprise applications, particularly in finance and
IoT, generate mixed workloads with continuous stream
processing, OLTP, and OLAP. DeltaLake [11] allows
streaming jobs to write small objects into a table with
low latency and coalesce them into larger objects later.
Fast “tailing” reads are also supported for treating a Delta
table as a message bus. Tatbul [75] outlines challenges in
streaming data integration, including common semantic
models, optimization, and transactional issues. These
challenges persist due to diverse applications and systems
focusing on limited feature sets.

Streaming Materialized Views. Traditional
materialized views (MVs) are not optimized for high-
velocity data stream processing, leading to the need for
streaming materialized views (SMVs). SMVs must handle
high-velocity inputs, update states with random access
patterns, and share updated states among concurrent
entities. Recent works, such as S-Query [79] and Umbra’s
continuous view scheme [85], have proposed solutions,
but the former lacks strict ACID guarantees, and the latter
has yet to be compared with state-of-the-art transactional
stream processing systems like S-Store [54], TStream [88],
and TSpoon [7]. The distinction in use cases drives a
clear separation of concerns and further investigation into
optimizing SMVs.

Cloud Applications. As Carbone et al. observed [23],
existing SPEs frequently lack transactional features that
are essential for Cloud applications, which require
advanced business logic and coordination. This is true
in particular when the state schema changes frequently,
necessitating reliable versioning of state to maintain
consistency. A specific use case, known as stateful
function-as-a-service (FaaS) [8, 43], exemplifies these
requirements, including ACID transactions, global state
consolidation, and the capacity for debugging and auditing.
Surprisingly, these demands align closely with the needs
of transactional stream processing (TSP), especially
concerning transactional shared state management during
stream processing. However, it is important to clarify that



A Survey on Transactional Stream Processing 25

current stateful FaaS solutions typically defer transactional
guarantees to the application layer, a gap that underscores
the relevance of TSP approaches. Yet, it remains an open
question whether existing TSP systems like S-Store [54]
can fully meet the nuanced demands of Cloud applications.
Questions such as how to support debugging [45] and
isolation [71] in stateful stream processing, especially when
structured as microservices, present intriguing challenges
worthy of further investigation.

6.2 Novel Hardware Platforms

Modern hardware advancements have made servers with
hundreds of cores and several terabytes of main memory
available. Such advancements have driven researchers to
rethink TSP systems and put emerging hardware platforms
to good use [89]. Next, we take a closer look at multi-
/many-core architectures, non-volatile storage, and trusted
computing platforms.

Multi-/Many-core Architectures. Supporting shared
mutable states in TSP systems can create bottlenecks due
to concurrent state accesses. TStream [88] is a recent
example that effectively utilizes multicore CPUs to improve
concurrent shared state access performance through dual-
mode scheduling and a dynamic transaction restructuring
mechanism. However, current TSP systems still face
scalability challenges with complex workloads and input
dependencies. Further research is needed to enhance TSP
systems for complex workloads, emerging multi-/many-core
architectures with high-bandwidth memory, and multi-node
settings while maintaining correctness guarantees [76].

Non-Volatile Storage. Non-Volatile Memory (NVM)
is an emerging technology offering byte-addressability
and low latency of DRAM along with persistence and
density of block-based storage media, but with limited
cell endurance and read-write latency asymmetry. Fernando
et al. [63] explored efficient approaches for analytical
workloads on NVM, potentially laying the foundation for
future TSP systems [67]. NVMe-based SSDs can deliver
high performance in terms of latency and peak bandwidth.
Lee et al. [47] investigated performance limitations of
SPEs managing application states on SSDs, showing query-
aware optimization can improve stateful stream processing
on SSDs. Their work is valuable for TSP systems with
strict ACID and streaming property requirements, but more
research is needed.

Trusted Computing Platforms. The need for low
latency and local processing of sensitive IoT data calls
for edge stream processing. However, edge devices are
vulnerable to attacks due to limited power and computing
capacity, posing severe security threats to sensitive data.
A potential solution [61] is trusted computing platforms
(TCPs), which protect data and code within isolated,

encrypted memory areas. Bringing TSP to TCPs is
nontrivial and requires further research, particularly in
handling limited memory for transactional stateful stream
processing [55]. Additionally, scaling systems to multiple
TCPs in a distributed environment presents challenges due
to each computing node’s computational limits.

7 Conclusion

In this survey, we provided a comprehensive overview
of Transactional Stream Processing (TSP), and addressed
key concepts, techniques, and challenges to be overcome,
in order to ensure reliable and consistent data stream
processing. We introduced terms, definitions, and a
conceptual framework for TSP systems and presented
a taxonomy that offers a structured understanding of
various approaches and models for integrating transactional
properties with streaming requirements. We also discussed
several notable TSP systems, each showcasing unique
features and design choices that were made to cater to
different application requirements. These systems offer
insight and inform designers about the alternative choices
they will need to make when designing and implementing a
novel TSP system. We highlighted various TSP applications
and use cases, such as stream processing optimization,
concurrent stateful processing, and stream and DBMS
integration. Finally, we explored some open challenges and
suggest future directions for TSP research and development,
including novel applications and hardware platforms. This
survey serves as a resource for researchers and practitioners.
It aims to inspire others to pursue work in this field and
develop efficient, reliable, and scalable TSP systems for
diverse application domains.

8 Declarations

The authors have no financial or proprietary interests in any
material discussed in this article.

Acknowledgements This work is supported by the National
Research Foundation, Singapore and Infocomm Media Development
Authority under its Future Communications Research & Development
Programme (FCP-SUTD-RG-2021-005), the SUTD Start-up Research
Grant (SRT3IS21164), the DFG Priority Program (MA4662-5), the
German Federal Ministry of Education and Research (BMBF) under
grants 01IS18025A (BBDC - Berlin Big Data Center) and 01IS18037A
(BIFOLD - Berlin Institute for the Foundations of Learning and Data).
Shuhao Zhang’work is partially done while working as a Postdoc at
TU Berlin.

References

1. Rocksdb. http://rocksdb.org/
2. Coral8, inc, http://www.coral8.com/ (2008)

http://www.coral8.com/


26 Shuhao Zhang et al.

3. Data Artisans Streaming Ledger Serializable ACID Transactions
on Streaming Data, https://www.data-artisans.com/blog/

serializable-acid-transactions-on-streaming-data

(2018)
4. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U.,

Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A.,
Ryvkina, E., et al.: The design of the borealis stream processing
engine. In: CIDR’05, vol. 5, pp. 277–289 (2005)

5. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey,
C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora:
A new model and architecture for data stream management.
The VLDB Journal 12(2), 120–139 (2003). DOI 10.1007/
s00778-003-0095-z. URL http://dx.doi.org/10.1007/

s00778-003-0095-z

6. Affetti, L., Margara, A., Cugola, G.: Flowdb: Integrating stream
processing and consistent state management. In: Proceedings of
the 11th ACM International Conference on Distributed and Event-
based Systems, Debs ’17, pp. 134–145. Acm, New York, NY, USA
(2017). DOI 10.1145/3093742.3093929. URL http://doi.acm.

org/10.1145/3093742.3093929

7. Affetti, L., Margara, A., Cugola, G.: Tspoon: Transactions
on a stream processor. Journal of Parallel and Distributed
Computing 140, 65–79 (2020). DOI https://doi.org/10.1016/
j.jpdc.2020.03.003. URL http://www.sciencedirect.com/

science/article/pii/S0743731518305082

8. Akhter, A., Fragkoulis, M., Katsifodimos, A.: Stateful functions as
a service in action. Proceedings of the VLDB Endowment 12(12),
1890–1893 (2019)

9. Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman,
J., Lax, R., McVeety, S., Mills, D., Nordstrom, P., Whittle, S.:
Millwheel: Fault-tolerant stream processing at internet scale. Proc.
VLDB Endow. 6(11), 1033–1044 (2013-08). DOI 10.14778/
2536222.2536229

10. Arasu, A., Babu, S., Widom, J.: The cql continuous query
language: Semantic foundations and query execution. The
VLDB Journal 15(2), 121–142 (2006). DOI 10.1007/
s00778-004-0147-z. URL http://dx.doi.org/10.1007/

s00778-004-0147-z

11. Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy, M.,
Torres, J., van Hovell, H., Ionescu, A., Łuszczak, A., Świtakowski,
M., Szafrański, M., Li, X., Ueshin, T., Mokhtar, M., Boncz,
P., Ghodsi, A., Paranjpye, S., Senster, P., Xin, R., Zaharia, M.:
Delta lake: High-performance acid table storage over cloud object
stores. Proc. VLDB Endow. 13(12), 34113424 (2020). DOI 10.
14778/3415478.3415560. URL https://doi.org/10.14778/

3415478.3415560

12. Ayad, A.M., Naughton, J.F.: Static optimization of conjunctive
queries with sliding windows over infinite streams. In:
Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’04, p. 419430. Association
for Computing Machinery, New York, NY, USA (2004). DOI
10.1145/1007568.1007616. URL https://doi.org/10.1145/

1007568.1007616

13. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.:
Models and issues in data stream systems. In: Proceedings of the
Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’02, p. 116. Association
for Computing Machinery, New York, NY, USA (2002). DOI
10.1145/543613.543615. URL https://doi.org/10.1145/

543613.543615

14. Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.:
Fault-tolerance in the borealis distributed stream processing
system. In: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pp. 13–24 (2005)

15. Bernstein, P., Newcomer, E.: Principles of Transaction Processing:
For the Systems Professional. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1997)

16. Bernstein, P.A., Goodman, N.: Concurrency control in distributed
database systems. ACM Comput. Surv. 1981 13(2), 185–221
(1981). DOI 10.1145/356842.356846. URL http://doi.acm.

org/10.1145/356842.356846

17. Botan, I., Alonso, G., Fischer, P.M., Kossmann, D., Tatbul,
N.: Flexible and scalable storage management for data-intensive
stream processing. In: Proceedings of the 12th International
Conference on Extending Database Technology: Advances in
Database Technology, EDBT ’09, p. 934945. Association for
Computing Machinery, New York, NY, USA (2009). DOI
10.1145/1516360.1516467. URL https://doi.org/10.1145/

1516360.1516467

18. Botan, I., Cho, Y., Derakhshan, R., Dindar, N., Haas, L., Kim,
K., Lee, C., Mundada, G., Shan, M.C., Tatbul, N., Yan, Y.,
Yun, B., Zhang, J.: Design and implementation of the maxstream
federated stream processing architecture (2009). DOI 10.1007/
978-3-642-14559-9 2

19. Botan, I., Fischer, P.M., Kossmann, D., Tatbul, N.: Transactional
stream processing. In: Proceedings of the 15th International
Conference on Extending Database Technology, Edbt ’12, pp.
204–215. Acm, New York, NY, USA (2012). DOI 10.
1145/2247596.2247622. URL http://doi.acm.org/10.1145/

2247596.2247622

20. Braun, L., Etter, T., Gasparis, G., Kaufmann, M., Kossmann, D.,
Widmer, D., Avitzur, A., Iliopoulos, A., Levy, E., Liang, N.:
Analytics in motion: High performance event-processing and real-
time analytics in the same database. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, p. 251264. Association for Computing
Machinery, New York, NY, USA (2015). DOI 10.1145/2723372.
2742783. URL https://doi.org/10.1145/2723372.2742783

21. Brito, A., Fetzer, C., Sturzrehm, H., Felber, P.: Speculative out-
of-order event processing with software transaction memory.
In: R. Baldoni (ed.) Proceedings of the Second International
Conference on Distributed Event-Based Systems, DEBS 2008,
Rome, Italy, July 1-4, 2008, ACM International Conference
Proceeding Series, vol. 332, pp. 265–275. ACM (2008). DOI
10.1145/1385989.1386023. URL https://doi.org/10.1145/

1385989.1386023

22. Carbone, P., Ewen, S., Fóra, G., Haridi, S., Richter, S., Tzoumas,
K.: State management in apache flink: Consistent stateful
distributed stream processing. Proc. VLDB Endow. 10(12), 1718–
1729 (2017-08). DOI 10.14778/3137765.3137777. URL https:

//doi.org/10.14778/3137765.3137777

23. Carbone, P., Fragkoulis, M., Kalavri, V., Katsifodimos, A.:
Beyond analytics: The evolution of stream processing systems. In:
Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’20, p. 26512658. Association
for Computing Machinery, New York, NY, USA (2020). DOI
10.1145/3318464.3383131. URL https://doi.org/10.1145/

3318464.3383131

24. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S.,
Tzoumas, K.: Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 36(4) (2015)

25. Cetintemel, U., Du, J., Kraska, T., Madden, S., Maier, D., Meehan,
J., Pavlo, A., Stonebraker, M., Sutherland, E., Tatbul, N., Tufte,
K., Wang, H., Zdonik, S.: S-store: A streaming newsql system for
big velocity applications. Proc. VLDB Endow. 7(13), 1633–1636
(2014). DOI 10.14778/2733004.2733048. URL http://dx.doi.

org/10.14778/2733004.2733048

26. Chandrasekaran, S., Franklin, M.: Remembrance of streams past:
Overload-sensitive management of archived streams. In: VLDB
(2004)

27. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A
distributed storage system for structured data. In: 7th USENIX

https://www.data-artisans.com/blog/serializable-acid-transactions-on-streaming-data
https://www.data-artisans.com/blog/serializable-acid-transactions-on-streaming-data
http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1007/s00778-003-0095-z
http://doi.acm.org/10.1145/3093742.3093929
http://doi.acm.org/10.1145/3093742.3093929
http://www.sciencedirect.com/science/article/pii/S0743731518305082
http://www.sciencedirect.com/science/article/pii/S0743731518305082
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.14778/3415478.3415560
https://doi.org/10.1145/1007568.1007616
https://doi.org/10.1145/1007568.1007616
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/543613.543615
http://doi.acm.org/10.1145/356842.356846
http://doi.acm.org/10.1145/356842.356846
https://doi.org/10.1145/1516360.1516467
https://doi.org/10.1145/1516360.1516467
http://doi.acm.org/10.1145/2247596.2247622
http://doi.acm.org/10.1145/2247596.2247622
https://doi.org/10.1145/2723372.2742783
https://doi.org/10.1145/1385989.1386023
https://doi.org/10.1145/1385989.1386023
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3318464.3383131
http://dx.doi.org/10.14778/2733004.2733048
http://dx.doi.org/10.14778/2733004.2733048


A Survey on Transactional Stream Processing 27

Symposium on Operating Systems Design and Implementation
(OSDI), pp. 205–218 (2006)

28. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A
distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS) 26(2), 1–26 (2008)

29. Chen, H., Migliavacca, M.: Streamdb: A unified data management
system for service-based cloud application. In: 2018 IEEE
International Conference on Services Computing (SCC), pp. 169–
176. IEEE (2018)

30. Chen, Q., Hsu, M.: Experience in extending query engine for
continuous analytics. In: T. Bach Pedersen, M.K. Mohania, A.M.
Tjoa (eds.) Data Warehousing and Knowledge Discovery, pp.
190–202. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

31. Chen, Q., Hsu, M.: Query engine grid for executing sql streaming
process. In: International Conference on Data Management in
Grid and P2P Systems, pp. 95–107. Springer (2011)

32. Chen, Q., Hsu, M., Zeller, H.: Experience in continuous analytics
as a service (caaas). In: Proceedings of the 14th International
Conference on Extending Database Technology, EDBT/ICDT ’11,
p. 509514. Association for Computing Machinery, New York, NY,
USA (2011). DOI 10.1145/1951365.1951426. URL https:

//doi.org/10.1145/1951365.1951426

33. Conway, N.: Cisc 499*: Transactions and data stream processing.
Apr 6, 28 (2008)

34. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman,
J.J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P.,
et al.: Spanner: Googles globally distributed database. ACM
Transactions on Computer Systems (TOCS) 31(3), 1–22 (2013)

35. Franklin, M., Krishnamurthy, S., Conway, N., Li, A.,
Russakovsky, A., Thombre, N.: Continuous analytics: Rethinking
query processing in a network-effect world. In: CIDR (2009)

36. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Rec. 16(3),
249259 (1987). DOI 10.1145/38714.38742. URL https://doi.

org/10.1145/38714.38742

37. Golab, L., Bijay, K.G., Özsu, M.T.: On concurrency control in
sliding window queries over data streams. In: Y. Ioannidis,
M.H. Scholl, J.W. Schmidt, F. Matthes, M. Hatzopoulos,
K. Boehm, A. Kemper, T. Grust, C. Boehm (eds.) Advances in
Database Technology - EDBT 2006, pp. 608–626. Springer Berlin
Heidelberg, Berlin, Heidelberg (2006)

38. Golab, L., Özsu, M.T.: Update-pattern-aware modeling and
processing of continuous queries. In: Proceedings of the 2005
ACM SIGMOD International Conference on Management of
Data, SIGMOD ’05, p. 658669. Association for Computing
Machinery, New York, NY, USA (2005). DOI 10.1145/1066157.
1066232. URL https://doi.org/10.1145/1066157.1066232

39. Götze, P., Sattler, K.: Snapshot isolation for transactional stream
processing. In: EDBT (2019)

40. Group, S., et al.: Stream: The stanford stream data manager. Tech.
rep., Stanford InfoLab (2003)

41. Gürgen, L., Roncancio, C., Labbé, C., Olive, V.: Transactional
issues in sensor data management. In: Proceedings of the
3rd Workshop on Data Management for Sensor Networks: In
Conjunction with VLDB 2006, DMSN ’06, p. 2732. Association
for Computing Machinery, New York, NY, USA (2006). DOI
10.1145/1315903.1315910. URL https://doi.org/10.1145/

1315903.1315910

42. Ishikawa, Y., Sugiura, K., Takao, D.: Fault tolerant data stream
processing in cooperation with oltp engine. In: A. Mondal,
H. Gupta, J. Srivastava, P.K. Reddy, D. Somayajulu (eds.) Big
Data Analytics, pp. 3–14. Springer International Publishing, Cham
(2018)

43. Katsifodimos, A., Fragkoulis, M.: Operational stream processing:
Towards scalable and consistent event-driven applications. (2019)

44. Krishnamurthy, S., Franklin, M.J., Davis, J., Farina, D., Golovko,
P., Li, A., Thombre, N.: Continuous analytics over discontinuous

streams. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, p. 10811092.
Association for Computing Machinery, New York, NY, USA
(2010). DOI 10.1145/1807167.1807290. URL https://doi.

org/10.1145/1807167.1807290

45. Kumar, A., Wang, Z., Ni, S., Li, C.: Amber: A debuggable
dataflow system based on the actor model. Proc. VLDB Endow.
13(5), 740753 (2020). DOI 10.14778/3377369.3377381. URL
https://doi.org/10.14778/3377369.3377381

46. Kumar, D., Li, J., Chandra, A., Sitaraman, R.: A ttl-based
approach for data aggregation in geo-distributed streaming
analytics. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 3(2), 1–27 (2019)

47. Lee, G., Eo, J., Seo, J., Um, T., Chun, B.G.: High-performance
stateful stream processing on solid-state drives. In: Proceedings
of the 9th Asia-Pacific Workshop on Systems, APSys ’18,
pp. 9:1–9:7. Acm, New York, NY, USA (2018). DOI 10.
1145/3265723.3265739. URL http://doi.acm.org/10.1145/

3265723.3265739

48. Liarou, E., Goncalves, R., Idreos, S.: Exploiting the power
of relational databases for efficient stream processing. In:
Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, pp.
323–334 (2009)

49. Liarou, E., Kersten, M.: Datacell: Building a data stream engine
on top of a relational database kernel. In: VLDB PhD Workshop
(2009)

50. Madden, S., Franklin, M.J.: Fjording the stream: An architecture
for queries over streaming sensor data. In: Proceedings 18th
International Conference on Data Engineering, pp. 555–566. IEEE
(2002)

51. Mao, Y., Zhao, J., Zhang, S., Liu, H., Markl, V.: Morphstream:
Adaptive scheduling for scalable transactional stream processing
on multicores. In: Proceedings of the 2023 International
Conference on Management of Data (SIGMOD), SIGMOD ’23.
Association for Computing Machinery, New York, NY, USA
(2023)

52. Marz, N.: Trident API Overview:
github.com/nathanmarz/storm/wiki/trident-apioverview.
github.com/nathanmarz/storm/wiki/Trident-APIOverview

53. Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N., Du, J.: Data
ingestion for the connected world. In: CIDR (2017)

54. Meehan, J., Tatbul, N., Zdonik, S., Aslantas, C., Cetintemel, U.,
Du, J., Kraska, T., Madden, S., Maier, D., Pavlo, A., Stonebraker,
M., Tufte, K., Wang, H.: S-store: Streaming meets transaction
processing. Proc. VLDB Endow. 8(13), 2134–2145 (2015).
DOI 10.14778/2831360.2831367. URL https://doi.org/10.

14778/2831360.2831367

55. Meftah, S., Zhang, S., Veeravalli, B., Aung, K.M.M.: Revisiting
the design of parallel stream joins on trusted execution
environments. Algorithms 15(6) (2022). DOI 10.3390/
a15060183. URL https://www.mdpi.com/1999-4893/15/6/

183

56. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar,
M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query
processing, resource management, and approximation ina data
stream management system. In: CIDR 2003. Stanford InfoLab
(2002)

57. Ooi, B.C., Tan, K.L., Tung, A., Chen, G., Shou, M.Z., Xiao,
X., Zhang, M.: Sense the physical, walkthrough the virtual,
manage the metaverse: A data-centric perspective. arXiv preprint
arXiv:2206.10326 (2022)

58. Oyamada, M., Kawashima, H., Kitagawa, H.: Efficient invocation
of transaction sequences triggered by data streams. In: 2011
International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, pp. 332–337. IEEE (2011)

https://doi.org/10.1145/1951365.1951426
https://doi.org/10.1145/1951365.1951426
https://doi.org/10.1145/38714.38742
https://doi.org/10.1145/38714.38742
https://doi.org/10.1145/1066157.1066232
https://doi.org/10.1145/1315903.1315910
https://doi.org/10.1145/1315903.1315910
https://doi.org/10.1145/1807167.1807290
https://doi.org/10.1145/1807167.1807290
https://doi.org/10.14778/3377369.3377381
http://doi.acm.org/10.1145/3265723.3265739
http://doi.acm.org/10.1145/3265723.3265739
github.com/nathanmarz/storm/wiki/Trident-APIOverview
https://doi.org/10.14778/2831360.2831367
https://doi.org/10.14778/2831360.2831367
https://www.mdpi.com/1999-4893/15/6/183
https://www.mdpi.com/1999-4893/15/6/183


28 Shuhao Zhang et al.

59. Oyamada, M., Kawashima, H., Kitagawa, H.: Continuous query
processing with concurrency control: Reading updatable resources
consistently. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, p. 788794.
Association for Computing Machinery, New York, NY, USA
(2013). DOI 10.1145/2480362.2480514. URL https://doi.

org/10.1145/2480362.2480514

60. Oyamada, M., Kawashima, H., Kitagawa, H.: Data stream
processing with concurrency control. SIGAPP Appl. Comput.
Rev. 13(2), 5465 (2013). DOI 10.1145/2505420.2505425. URL
https://doi.org/10.1145/2505420.2505425

61. Park, H., Zhai, S., Lu, L., Lin, F.X.: Streambox-tz: Secure stream
analytics at the edge with trustzone. In: Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC 19, p. 537554. USENIX Association, USA (2019)

62. Pekhimenko, G., Guo, C., Jeon, M., Huang, P., Zhou, L.:
{TerseCades}: Efficient data compression in stream processing.
In: 2018 USENIX Annual Technical Conference (USENIX
ATC 18), Usenix Atc ’18, pp. 307–320. USENIX Association,
Berkeley, CA, USA (2018). URL http://dl.acm.org/

citation.cfm?id=3277355.3277385

63. Philipp, G., Stephan, B., Kai-Uwe, S.: An nvm-aware storage
layout for analytical workloads. In: 2018 IEEE 34th International
Conference on Data Engineering Workshops (ICDEW), pp. 110–
115 (2018). DOI 10.1109/icdew.2018.00025

64. Poess, M., Rabl, T., Jacobsen, H.A., Caufield, B.: Tpc-di: The first
industry benchmark for data integration. Proc. VLDB Endow.
7(13), 13671378 (2014). DOI 10.14778/2733004.2733009. URL
https://doi.org/10.14778/2733004.2733009

65. Ray, M., Lei, C., Rundensteiner, E.A.: Scalable pattern sharing
on event streams*. In: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, p. 495510.
Association for Computing Machinery, New York, NY, USA
(2016). DOI 10.1145/2882903.2882947. URL https://doi.

org/10.1145/2882903.2882947

66. Sahin, O.C., Karagoz, P., Tatbul, N.: Streaming event detection in
microblogs: Balancing accuracy and performance. In: M. Bakaev,
F. Frasincar, I.Y. Ko (eds.) Web Engineering, pp. 123–138.
Springer International Publishing, Cham (2019)

67. Sattler, K.U.: Transactional stream processing on
non-volatile memory (2019). URL https://www.

tu-ilmenau.de/dbis/research/active-projects/

transactional-stream-processing/

68. Shahvarani, A., Jacobsen, H.A.: Parallel index-based stream join
on a multicore cpu. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20,
p. 25232537. Association for Computing Machinery, New York,
NY, USA (2020). DOI 10.1145/3318464.3380576. URL https:

//doi.org/10.1145/3318464.3380576

69. Shaikh, S.A., Chao, D., Nishimura, K., Kitagawa, H.: Incremental
continuous query processing over streams and relations with
isolation guarantees. In: Proceedings, Part I, 27th International
Conference on Database and Expert Systems Applications -
Volume 9827, DEXA 2016, p. 321335. Springer-Verlag, Berlin,
Heidelberg (2016). DOI 10.1007/978-3-319-44403-1 20. URL
https://doi.org/10.1007/978-3-319-44403-1%5F20

70. Shaikh, S.A., Kitagawa, H.: Streamingcube: Seamless integration
of stream processing and olap analysis. IEEE Access 8, 104,632–
104,649 (2020). DOI 10.1109/ACCESS.2020.2999572

71. Shillaker, S., Pietzuch, P.: Faasm: Lightweight isolation for
efficient stateful serverless computing. In: 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pp. 419–433.
USENIX Association (2020). URL https://www.usenix.org/

conference/atc20/presentation/shillaker

72. Silvestre, P.F., Fragkoulis, M., Spinellis, D., Katsifodimos,
A.: Clonos: Consistent Causal Recovery for Highly-Available
Streaming Dataflows, p. 16371650. Association for Computing

Machinery, New York, NY, USA (2021). URL https://doi.

org/10.1145/3448016.3457320

73. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements
of real-time stream processing. SIGMOD Rec. 34(4), 42–47
(2005). DOI 10.1145/1107499.1107504. URL http://doi.acm.

org/10.1145/1107499.1107504

74. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era: (it’s time
for a complete rewrite). In: Proc VLDB Endow. 2007

75. Tatbul, N.: Streaming data integration: Challenges and
opportunities. In: 2010 IEEE 26th International Conference
on Data Engineering Workshops (ICDEW 2010), pp. 155–158
(2010). DOI 10.1109/ICDEW.2010.5452751

76. Tatbul, N.: Transactional Stream Processing, pp. 4205–4211.
Springer New York, New York, NY (2018). DOI 10.1007/
978-1-4614-8265-9 80704. URL https://doi.org/10.1007/

978-1-4614-8265-9%5F80704

77. Theodorakis, G., Kounelis, F., Pietzuch, P., Pirk, H.: Scabbard:
Single-node fault-tolerant stream processing. Proc. VLDB Endow.
15(2), 361374 (2021). DOI 10.14778/3489496.3489515. URL
https://doi.org/10.14778/3489496.3489515

78. To, Q.C., Soto, J., Markl, V.: A survey of state management in
big data processing systems. The VLDB Journal 27(6), 847–872
(2018). DOI 10.1007/s00778-018-0514-9. URL https://doi.

org/10.1007/s00778-018-0514-9

79. Verheijde, J., Karakoidas, V., Fragkoulis, M., Katsifodimos, A.: S-
query: Opening the black box of internal stream processor state.
In: 2022 IEEE 38th International Conference on Data Engineering
(ICDE), pp. 1314–1327. IEEE (2022)

80. Vidyasankar, K.: Transactional properties of compositions of
internet of things services. pp. 1–6 (2015). DOI 10.1109/ISC2.
2015.7366218

81. Vidyasankar, K.: A transaction model for executions of
compositions of internet of things services. Procedia Computer
Science 83, 195–202 (2016). DOI 10.1016/j.procs.2016.04.116

82. Vidyasankar, K.: Transactional composition of executions in
stream processing. In: 2016 27th International Workshop on
Database and Expert Systems Applications (DEXA), pp. 114–118
(2016). DOI 10.1109/DEXA.2016.037

83. Vossen, G.: ACID Properties, pp. 1–3. Springer New York, New
York, NY (2016). DOI 10.1007/978-1-4899-7993-3 831-2. URL
https://doi.org/10.1007/978-1-4899-7993-3%5F831-2

84. Wang, D., Rundensteiner, E.A., Ellison III, R.T.: Active complex
event processing over event streams. Proc. VLDB Endow. 4(10),
634–645 (2011). DOI 10.14778/2021017.2021021. URL http:

//dx.doi.org/10.14778/2021017.2021021

85. Winter, C., Schmidt, T., Neumann, T., Kemper, A.: Meet me
halfway: Split maintenance of continuous views. Proceedings of
the VLDB Endowment 13(11)

86. Wu, Y., Arulraj, J., Lin, J., Xian, R., Pavlo, A.: An empirical
evaluation of in-memory multi-version concurrency control. Proc.
VLDB Endow. 10(7), 781–792 (2017-03). DOI 10.14778/
3067421.3067427

87. Zeuch, S., Chaudhary, A., Monte, B.D., Gavriilidis, H.,
Giouroukis, D., Grulich, P.M., Breß, S., Traub, J., Markl,
V.: The nebulastream platform for data and application
management in the internet of things. In: CIDR 2020, 10th
Conference on Innovative Data Systems Research, Amsterdam,
The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org (2020). URL http://cidrdb.org/cidr2020/

papers/p7-zeuch-cidr20.pdf

88. Zhang, S., Wu, Y., Zhang, F., He, B.: Towards concurrent stateful
stream processing on multicore processors. In: 2020 IEEE 36th
International Conference on Data Engineering (ICDE), pp. 1537–
1548 (2020). DOI 10.1109/ICDE48307.2020.00136

89. Zhang, S., Zhang, F., Wu, Y., He, B., Johns, P.: Hardware-
conscious stream processing: A survey. SIGMOD Rec. 48(4),

https://doi.org/10.1145/2480362.2480514
https://doi.org/10.1145/2480362.2480514
https://doi.org/10.1145/2505420.2505425
http://dl.acm.org/citation.cfm?id=3277355.3277385
http://dl.acm.org/citation.cfm?id=3277355.3277385
https://doi.org/10.14778/2733004.2733009
https://doi.org/10.1145/2882903.2882947
https://doi.org/10.1145/2882903.2882947
https://www.tu-ilmenau.de/dbis/research/active-projects/transactional-stream-processing/
https://www.tu-ilmenau.de/dbis/research/active-projects/transactional-stream-processing/
https://www.tu-ilmenau.de/dbis/research/active-projects/transactional-stream-processing/
https://doi.org/10.1145/3318464.3380576
https://doi.org/10.1145/3318464.3380576
https://doi.org/10.1007/978-3-319-44403-1%5F20
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1145/3448016.3457320
https://doi.org/10.1145/3448016.3457320
http://doi.acm.org/10.1145/1107499.1107504
http://doi.acm.org/10.1145/1107499.1107504
https://doi.org/10.1007/978-1-4614-8265-9%5F80704
https://doi.org/10.1007/978-1-4614-8265-9%5F80704
https://doi.org/10.14778/3489496.3489515
https://doi.org/10.1007/s00778-018-0514-9
https://doi.org/10.1007/s00778-018-0514-9
https://doi.org/10.1007/978-1-4899-7993-3%5F831-2
http://dx.doi.org/10.14778/2021017.2021021
http://dx.doi.org/10.14778/2021017.2021021
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf


A Survey on Transactional Stream Processing 29

1829 (2020). DOI 10.1145/3385658.3385662. URL https:

//doi.org/10.1145/3385658.3385662

https://doi.org/10.1145/3385658.3385662
https://doi.org/10.1145/3385658.3385662

	Introduction
	Background
	Taxonomy of TSP
	Systems Offering Transactional Stream Processing
	Applications/Scenarios Leveraging TSP
	Research Outlook
	Conclusion
	Declarations

