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Data Stream Clustering (DSC) plays an important role in mining continuous and unlabeled data streams in
real-world applications. Over the last decades, numerous DSC algorithms have been proposed with promising
clustering accuracy and efficiency. Despite the significant differences among existing DSC algorithms, they are
commonly built around four key design aspects: summarizing data structure, window model, outlier detection
mechanism, and offline refinement strategy. However, there is a lack of empirical studies on these key design
aspects in the same codebase using real-world workloads with distinct characteristics. As a result, it is difficult
for researchers to improve upon the state-of-the-art. In this paper, we conduct such a study of DSC on its four
key design aspects. We implemented state-of-the-art variants of all of these design choices in an open-sourced
platform from scratch and evaluated them using both real-world and synthetic workloads. Our analysis
identifies the fundamental issues and trade-offs of each design choice in terms of both accuracy and efficiency.
We even find that combining flexible design choices led to the development of a new algorithm called Benne,
which can be tuned to achieve either better accuracy or better efficiency compared to the state-of-the-art.
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1 INTRODUCTION
Data Stream Clustering (DSC) is one of the most important data streammining operations. In the last
decades, DSC has been widely applied in various real-world scenarios, including network intrusion
detection [36], social network analysis [19], and weather forecast [33]. DSC aims at grouping input
tuples according to their attribute similarities on the fly. In contrast to batch clustering algorithms
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such as KMeans [25, 27] or DBSCAN [17], DSC algorithms are required to handle some data
stream characteristics, such as cluster evolution and outlier evolution [6, 7, 19, 22, 26, 29, 30, 34].
Furthermore, in addition to clustering accuracy, processing efficiency is also a critical concern of
DSC algorithms [7, 13, 28].

The complex use case scenarios and varying performance metrics motivate the rapid development
of numerousDSC algorithms [4, 5, 8, 10, 14, 19, 20, 37, 37, 38]. Despite its prosperity, it is still difficult
for researchers and practitioners to determine a suitable DSC algorithm on real-world workloads
with varying characteristics. In particular, there are several fundamental design choices of DSC
algorithms that have different trade-offs and performance behaviors. These design choices are also
highly dependent on each other. Thus, it is non-trivial to discern which ones are better than others
and why.
Some prior works [13, 28] have conducted evaluations of DSC algorithms, but they suffer from

several drawbacks, making them not able to fairly reflect and reason the behavior of DSC algorithms.
(1) Coarse-grained comparison among DSC algorithms: Existing studies are limited to giving a coarse-
grained analysis of absolute performance among DSC algorithms. They fail to investigate the
design similarities and differences in algorithm design aspects and pinpoint those attributed to the
performance differences. (2) Problematic benchmark settings: Existing studies lead to misguided
experimental results that may be caused by various programming languages, compilers, and
implementation tricks. Furthermore, previous benchmark settings only contain accuracy metrics
while ignoring processing efficiency metrics, which are at least equally crucial. Moreover, the used
workloads are not able to cover some key characteristics of real-world scenarios.

In this paper, we perform an in-depth study of key design aspects of DSC algorithms: (1)
summarizing data structure, (2) window model, (3) outlier detection mechanism, and (4) offline
refinement strategy. For each design aspect, there are multiple design choices that lead to different
DSC algorithms that behave differently under varying workloads. As part of this investigation,
we made a good faith effort to implement all of these approaches in the same framework Sesame
from scratch using C++, eliminating the differences among existing implementations caused by
programming languages and compilers. Sesame follows a modular design, which clearly separates
key design aspects. We open-source Sesame at https://github.com/intellistream/Sesame.

Based on Sesame, we conduct our study using four real-world and two synthetic workloads with
varying characteristics. Through extensive evaluation, we are able to make a number of novel
findings, including (a) for each design aspect, none of the design choices can always guarantee good
performance under varying workload characteristics and/or optimization targets; (b) each combined
selection of design choices from four design aspects has its own strength and limitation and none
can achieve the highest accuracy and efficiency at the same time; (c) algorithm configuration and
correlations among design aspects bring further complex influence on the clustering behaviour. Our
findings even promote a novel DSC algorithm called Benne, that combines flexible design choices
from four design aspects. It can achieve either a better accuracy or a better efficiency compared to
the state-of-the-art on all of our tested workloads.
The remaining of this paper is organized as follows: Section 2 provides some preliminary

knowledge of DSC algorithms and the four design aspects. In Sections 3∼6,we provide a brief
description of every design aspect of DSC algorithms and the performance trade-offs among design
choices. In Section 7, we discuss the methodology of our experimental study including the algorithm
selection, dataset selection, and the design of our testbed – Sesame. We show the comprehensive
evaluation results in Section 8. Section 9 discusses related work, and Section 10 concludes this
study. Note that, this work focuses on single-thread execution, and exploring parallelization for
DSC algorithms is a subject for future study.
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2 PERLIMINARY KNOWLEDGE
This section begins with an overview of the high-level concepts of DSC and its algorithmic design
aspects.

2.1 Data Stream Clustering
The analysis of large-scale datasets that evolve over time has gained considerable attention, with a
particular focus on stream processing methods. Among the vital tasks in data stream analysis is the
clustering of data streams [6, 7]. This task involves partitioning data in streams into clusters such
that similar data are grouped together while dissimilar data are separated into distinct clusters.
Unlike traditional clustering algorithms [17, 25, 27] that work on the entire dataset, DSC

algorithms have to analyze each data point as it arrives in sequential order and perform necessary
processing or learning steps in an online fashion. In particular, DSC algorithms commonly maintain
temporal clusters that temporarily hold the current computed clustering results. Furthermore, there
are many unique characteristics that DSC algorithms need to handle for the evolving data stream,
such as 1) cluster evolution [19, 22, 26, 29, 30], which refers to the five types of cluster activities
that occur among temporal clusters including emerge, merge, split, adjust, and delete, and 2) outlier
evolution, which refers to the dynamic role exchange between outlier clusters and temporal clusters
during stream clustering procedure [6, 7, 34].

2.2 Design Aspects of DSC Algorithms
Numerous DSC algorithms have been proposed [4, 5, 10, 14, 19, 20, 23, 37, 38], and are all built with
four key design aspects: summarizing data structure, window model, outlier detection mechanism,
and offline refinement strategy. Table 1 summarize the design choices of every design aspect.
(1) Summarizing Data Structure stores the intermediate clustering information. Since data

streams are typically infinite, it is impractical to store the entire input data stream for clustering.
Hence, developing suitable data structures for effectively summarizing the data stream is a crucial
step for any DSC algorithm.
(2) Window Model is used to determine the most recent input data for processing. In most

cases, more recent information from the stream better reflects the evolving activities in clusters.
Thus, setting up a window to store this information for clustering can effectively improve the
algorithm’s clustering capability.

(3) Outlier Detection Mechanism identifies the incoming data points that seem to be different
from the historical stream. Existing DSC algorithms all identify the new data points which are
far from the temporal clusters as outliers. However, when outlier evolution occurs in data stream,
some previous outliers may become part of clusters and some clustered points may become outliers.
Therefore, the detection of outliers over data streams is always a challenging task for all of the DSC
algorithms.

(4) Offline Refinement Strategy refers to the process of applying offline clustering algorithms
to refine the clustering results from online clustering. Different from the other three design aspects
that aim to keep execution continuously in real-time, the offline refinement strategy only applies
once before getting the final clustering result. Thus, it usually does not bring a significant influence
on efficiency but hopefully improves accuracy.

3 SUMMARIZING DATA STRUCTURE
Generally there are two main catalogues for summarizing data structure: the hierarchical catalogue
and the partitional catalogue. In the following, we discuss six representative summarizing data
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Table 1. Summary of design aspects

Design
Aspect

Design
Choices Efficiency Accuracy Notes

Summarizing
Data
Structure

CFT high high efficient data insertion and some additional operations for
handling cluster evolution

CoreT low High need to rebuild the whole tree for updating lazily
DPT high high contain additional density information for clustering

MCs low high keep basic structure of CFT and additional time information;
needs to search for every clusters during data insertion

Grids high low no need for frequent distance calculation but not so much
accurate during data insertion

AMS low High need to frequently rebuild the structure

Window
Model

LandmarkWM depends depends difficult to determine a suitable landmark configuration
SlidingWM high low fixed window size results in fewer clusters for computation
DampedWM low depends process all the data points with a decay function

Outlier
Detection

NoOutlierD high low do not use any outlier detection mechanism

OutlierD high high detect outlier clusters through density and reduce the number
of temporal clusters

OutlierD-B low high well handle cluster evolution among outliers and avoid cluster
pollution but consumes much time to maintain the buffer

OutlierD-T high high prevent removing active clusters and be more focused on recent
cluster information

OutlierD-BT low high improve the algorithms’ ability for clustering evolving stream
but still be low efficient in maintaining buffer

Offline
Refinement

Refine
minor

overhead
minor
impact

any existing batch-based clustering algorithms may apply to
refine results

NoRefine no impact no impact do not apply any further refinement
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densitycenter object
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time
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Fig. 1. Six Types of Summarizing Data Structure.

structures commonly used inDSC algorithms. Three are hierarchical-based, and three are partitional-
based. Their main features is summarized in Figure 1.

3.1 Hierarchical Summarizing Data Structure
Hierarchical summarizing data structure groups the incoming data points into a tree structure. As
shown in Figure 1(a), each temporal cluster is depicted as a node, and the parent cluster comprises
multiple sub-clusters within the tree. To insert a new data point, it starts by searching for a suitable
temporal cluster from the root node to one of the leaf nodes. Such a tree structure makes the
insertion fast as there is no need for checking every existing temporal cluster. In the following, we
discuss three popular and representative hierarchical summarizing data structures different from
each other for the implementation of each tree node.
Clustering Feature Tree (CFT). CFT [38] is one of the oldest but representative hierarchical

summarizing data structures. Every tree node of CFT is named clustering feature (CF), which consists
of the position information of a temporal cluster. Although CF is quite simple, it is adequate
to support many basic operations of stream clustering, such as distance calculation and cluster
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updating. Due to the additivity of the CF [38], CFT can be updated incrementally rather than starting
from scratch again. Moreover, it also offers some advanced operations such as merging or splitting
for handling cluster evolution during stream clustering.

Coreset Tree (CoreT). CoreT [4] is a binary tree structure used for extracting a core subset from
a large volume of stream data. Compared with CF in CFT, the tree node of CoreT named CoreNode
provides additional information about the density of the corresponding cluster. However, since
CoreT is unable to update incrementally like CFT, it needs to rebuild the whole tree structure during
the clustering procedure, which might influence the clustering efficiency of the whole algorithm.
To overcome this shortage, CoreT reduces the time of rebuilding via lazily performing the update.
In exchange, it may not be able to provide real-time clustering information for accurate clustering,
especially when cluster evolution happens frequently.
Dependency Tree (DPT). DPT [19] is one of the most recent hierarchical summarizing data

structures. It is specifically designed for handling cluster evolution. The tree node of DPT is called
cluster cell (CC). DPT is built based on the cluster density and it requires every cluster with low density
to be connected to its nearest denser cluster. Although CC contains similar clustering information
as CoreNode in CoreT, it can partially adjust itself for adapting to the evolving activities in the
stream, helping to achieve a higher clustering efficiency.

3.2 Partitional Summarizing Data Structure
As shown in Figure 1(b), partitional summarizing data structures do not organize temporal clusters
into hierarchical structures. They hence denote temporal clusters as objects, rather than nodes.
When inserting a new data point, they need to check every object. This brings significant overhead
compared to hierarchical structures but may help to achieve a higher clustering accuracy. In the
following, we discuss three typical partitional summarizing data structures, different from each
other by the implementation of objects.
Micro Clusters (MCs). MCs [5] is one of the oldest partitional summarizing data structures. It

contains the same positional information as CF in CFT. To keep track of the clusters’ activities in
real-time, it has two additional elements used for summarizing the timestamps for the clusters’
updates. Therefore, it is more comprehensive and robust for stream clustering with high accuracy,
especially under cluster evolution.
Grids (Grids). Grids [14] performs its clustering simply based on checking whether the data

lies in a specific grid of 𝑑-dimensional space and grouping the dense grids into temporal clusters.
Compared to other data structures, Grids is more computationally efficient because it does not
require frequent distance calculations between new data and the grid. Additionally, it periodically
removes sparse grids, which further boosts its clustering efficiency. However, since every grid has a
fixed position in the space and the information about the relationship among grids is only updated
lazily, Grids may not work well when some evolving activities occur frequently among the grid
and thus leads to lower clustering accuracy.
Augmented Meyerson Sketch (AMS). AMS [10] is the extension of traditional Meyerson

Sketch [32] which can better summarize the clustering information using the limited number
of data points. AMSmainly consists of a set of temporally weighted centres and the weight is mainly
influenced by both the time and density information of the corresponding cluster. Similar to CoreT,
AMS may need to delete and reconstruct the created sketch to adapt to the evolving data stream.
This brings a huge efficiency cost and temporal information loss. Another drawback of AMS is that
it needs a predefined number of clusters (𝐾 ) that is hard to determine for clustering of real-world
evolving data streams.
Discussion. In general, hierarchical summarizing data structure improves the clustering

efficiency while the partitional structure is expected to bring in better accuracy. The unique
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design of each specific structure, however, leads to further differences in their clustering behaviour.
For example, although CFT, CoreT, DPT and MCs promise high clustering accuracy due to the
comprehensive information stored in their structure, their efficiency behaviour is quite different.
Only CFT and DPT can guarantee high efficiency due to their flexible updating. CoreT and AMS are
slow due to frequently rebuilding the whole structure while MCs is slow since it needs to scan
every temporal cluster for data insertion. For Grids, although it may not be as accurate as the
other structures, it largely saves its computation time due to eliminating the distance calculation
operation.

4 WINDOWMODEL
The window model can be categorized into three main types as illustrated in Figure 2. For each
kind of window model, there are further two types of window implementations: count-based
and time-based. We base on the count-based window when implementing DSC algorithms in our
benchmark as it is more frequently used [6].

4.1 Landmark Window Model (LandmarkWM)
As shown in Figure 2(a), LandmarkWM collects the data between two landmarks into a window
for clustering. When reaching the current landmark, the temporal clustering result will be stored
before clearing the current summarizing data structure. After that, the algorithm will continue
performing clustering based on the new ‘blank’ structure until reaching the next landmark. It is
hard to define a proper landmark configuration for LandmarkWM. If the two landmarks are spaced
very close together, many evolving activities in the stream will not be captured inside the window,
leading to poor clustering accuracy. On the contrary, if the two landmarks are set far from each
other, a great number of data points will be involved inside the window for computation and the
efficiency will decrease significantly.

4.2 Sliding Window Model (SlidingWM)
SlidingWM is usually implemented as a queue following a First-In-First-Out processing strategy
as depicted in Figure 2(b). Similar to the LandmarkWM, the SlidingWM only considers data objects
whose timestamp falls within the current window range with older ones discarded. In contrast to
the LandmarkWM whose window size can be dynamically determined by the landmark, the size of
the SlidingWM is predefined with a fixed value. The non-discriminate nature of data insertion and
deletion results in a smaller number of clusters by comparison and thus reduces computation time
and resources. However, this also means the clustering accuracy will greatly decrease especially
under a small window size configuration.
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4.3 Damped Window Model (DampedWM)
For both the LandmarkWM and the SlidingWM, all data objects in the window are associated with
equal importance. In contrast, to ensure the more recent data points in the window are always
being treated with higher priority, the DampedWM associate objects in the data stream with weights
that decay with a function 𝑓 (𝛼, 𝜆) over time. Meanwhile, unlike the other two types of window
models, DampedWM does not discard objects as time goes on. While taking all data into account may
bring in high accuracy, this causes efficiency issues. Furthermore, since the 𝛼 and 𝜆 parameters are
predefined, the decay function is always kept the same to determine the priority, and the DampedWM
may be more susceptible to some stream characteristics such as outlier evolution.
Discussion. Although these window models all try to prioritize the most recent data from

streams, their specific strategies are quite different leading to different clustering behaviours. For a
better clustering efficiency, SlidingWM may be the best choice since its fixed window size largely
reduces the number of clusters for maintenance. On the contrary, although both LandmarkWM and
DampedWM may not be as efficient as the SlidingWM, they can bring in more accurate clustering
results. Finally, for all three types of window models, their clustering behaviour is sensitive to their
specific window configurations, which have not been studied in depth in the literature.

5 OUTLIER DETECTION MECHANISM
Unlike the former two design aspects, the outlier detection mechanism is an optional design
aspect. It further contains two optional independent optimizations: the use of a buffer and a timer,
respectively. Put them together, including not using any outer detection mechanism (NoOutlierD),
we have five different choices for this design aspect.

5.1 Outlier Detection (OutlierD)
As depicted in Figure 3(a), the basic outlier detection mechanism (OutlierD) is to periodically select
temporal clusters that are sparse in density (denoted in light colour in the figure) to transform into
the outlier clusters and remove them from the memory [5, 14]. Compared with NoOutlierD, its
clustering accuracy will greatly improve. Moreover, the whole clustering efficiency may not even
get influenced by adding this additional detection operation since the number of temporal clusters
will be reduced, saving time for future data insertion and cluster updating.

5.2 Outlier Detection with Buffer (OutlierD-B)
Due to the influence of outlier evolution, some outliers, which can be grouped into sparse clusters
with other outliers, need to be tracked during the clustering procedure. This is because these outlier
clusters may become dense enough after adding more and more outliers and will be transformed
into temporal clusters. In this case, setting a buffer to store the summary of these outlier clusters
for later detection (OutlierD-B), as shown in Figure 12(b), is one of the most commonly used
optimization strategies in outlier detection [19, 37]. Another advantage of applying a buffer for
detection is that incoming data once detected as outliers are immediately inserted into the outlier
buffer rather than temporal clusters avoiding pollution. However, maintaining the outlier buffer
consumes additional computational time and resources.

5.3 Outlier Detection with Timer (OutlierD-T)
Apart from periodically identifying outlier clusters via density information, DSC algorithms may
further check whether the temporal clusters are not active anymore before transforming them to
outlier clusters with a timer (OutlierD-T) as illustrated in Figure 12(c). Using a timer makes the
detection more robust than OutlierD since it helps to prevent accidentally removing temporal
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clusters that may soon become dense. Additionally, using a timer helps the DSC algorithm to be
more focused on the recent cluster changes, thus bringing higher efficiency.

5.4 Outlier Detection with Buffer and Timer (OutlierD-BT)
Outlier buffer and outlier timer can be also used in combination (OutlierD-BT) as depicted in
Figure 12(d). Similar to OutlierD-B, OutlierD-BT maintains a buffer to temporarily store outlier
clusters, which may transform back to temporal clusters. Different from OutlierD-B though,
OutlierD-BT additionally checks if a sparse temporal cluster is inactive before transforming it
to an outlier cluster with the timer. Furthermore, the algorithm will also periodically check and
remove some inactive outlier clusters in the buffer. This helps the algorithm improve its clustering
accuracy for handling outlier evolution but also consumes a lot of time for buffer maintenance.
Discussion. The buffer and timer optimizations can be applied either separately or

simultaneously, resulting in different decisions regarding the outlier detection mechanism. The use
of a buffer can greatly improve the clustering quality due to its better ability for handling outlier
evolution. However, maintaining the outlier buffer in real-time will also bring down the efficiency.
On the contrary, the use of the timer may be beneficial for both better clustering accuracy and
efficiency, especially under outlier evolution. Using a buffer and timer together in outlier detection
further complicates the clustering behaviour and motivates an in-depth study.

6 OFFLINE REFINEMENT STRATEGY
The basic idea of the offline refinement strategy is to utilize offline clustering algorithms to improve
the online clustering results. Being another optional design aspect in DSC algorithm, we study two
design choices, NoRefine and Refine. As shown in Figure 4, if apply NoRefine, the algorithm will
directly output the temporal clusters 𝐶 as the final clustering results. Instead, if Refine is applied,
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Table 2. Specification of our evaluation platform

Component Description
Processor Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
L3 Cache Size 48MiB
Memory 256GB DDR4 RAM
OS Ubuntu 20.04.4 LTS
Kernel Linux 5.4.0-122-generic
Compiler GCC 11.3.0 with -O3

some batch clustering algorithms, such as density-based (DBSCAN) or distance-based (KMeans),
will be applied on 𝐶 for further refining the results before output.

Discussion. Offline refinement is optional and can be easily applied to refine online clustering
results before outputting the result. The common wisdom is that it may further improve clustering
quality. Unfortunately, there is no prior study about the real impact of this design aspect on both
accuracy and efficiency. Even in recent years, some choose [4] to involve this design aspect in
their proposed DSC algorithms, and some choose not [19]. We will empirically show its impact via
extensive evaluations.

7 METHODOLOGY
In this section, we provide a detailed description of our experimental setting. In Section 7.1, we first
discuss our selection of eight existing DSC algorithms as references to our study. Next, we describe
our workload selection and the benchmark testbed implementation in Section 7.2 and Section 7.3,
respectively. All experiments are carried out on an Intel Xeon processor. Table 2 summarizes the
detailed specification of the hardware and software used in our experiments.

7.1 Algorithm Selection
We base our study on eight existing DSC algorithms. The summary of these algorithms is shown in
Table 3. BIRCH [38] can be considered a primitive algorithm in this area. In particular, the use of a
clustering feature (CF) for summarizing large amounts of data was first introduced in the BIRCH
algorithm in 1996. The CF was later extended and named micro cluster (MC) in the CluStream [5]
algorithm, which is considered the first DSC algorithm for efficient clustering of evolving data
streams with an online-offline strategy. DenStream [37] is a density-based algorithm that also
utilizes CF. It further introduces outlier detection in order to reduce the impact of noise on stream
clustering. DStream [14] partitions the n-dimensional feature space into density cells, and maps
each data stream object into density grid cells. Different from prior algorithms, StreamKM++ [4]
applies a two-step mechanism called “merge and split”, building around a data structure called
Coreset Tree. DBStream [20] addresses the issue that dense areas formed by online clusters may
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Table 3. A summary of representative DSC algorithms and their design decisions. The year attribute for each
algorithm is when it was first published.

Algorithm Year Summarizing Data Structure Window Model Outlier Detection Offline RefinementName Catalog
BIRCH [38] 1996 CFT Hierarchical LandmarkWM OutlierD NoRefine

CluStream [5] 2003 MCs Partitional LandmarkWM OutlierD-T Refine
DenStream [12] 2006 MCs Partitional DampedWM OutlierD-BT Refine
DStream [14] 2007 Grids Partitional DampedWM OutlierD-T NoRefine

StreamKM++ [4] 2012 CoreT Hierarchical LandmarkWM NoOutlierD Refine
DBStream [20] 2016 MCs Partitional DampedWM OutlierD-T Refine
EDMStream [19] 2017 DPT Hierarchical DampedWM OutlierD-BT NoRefine
SL-KMeans [10] 2020 AMS Partitional SlidingWM NoOutlierD NoRefine

Table 4. Characteristics differences of selected workloads. Note that the outliers column refers to whether
there are outliers in the final clustering results.

Workload Length Dimension Cluster Number Outliers Evolving Frequency
FCT [1] 581012 54 7 False Low

KDD99 [36] 4898431 41 23 True Low
Insects [35] 905145 33 24 False Low
Sensor [2] 2219803 5 55 False High

EDS 245270 2 363 False Varying
ODS 100000 2 90 Varying High

be separated by small, low-density areas in micro-cluster-based clustering algorithms during
refinement. EDMStream [19] uses a damped window model thus the stored cluster density decays
over time. SL-KMeans [10] presents the first algorithms for the 𝑘-clustering problem on sliding
windows with space linear in 𝑘 and empirically shows that it performs better than analytic bounds.
We select these algorithms based on two key criteria: 1) as illustrated in Table 3, these algorithms
cover a wide range of design decisions of all four design aspects; 2) the eight selectedDSC algorithms
are either representative (BIRCH [38] proposed in 1996) or proposed recently (e.g., SL-KMeans [10]
proposed in 2020) covering a long history in this field.

7.2 Dataset Selection
Table 4 summarizes the characteristics of our selected workloads. We carefully select six datasets
for evaluation with two key considerations. First, datasets originally used for evaluating any one of
the eight algorithms in Table 3 are inconsistent. For a fair and thorough evaluation, we selected
the three most commonly used datasets in our experiment. Specifically, FCT (Forest CoverType) is
used by SL-KMeans, StreamKM++, EDMStream, and DBStream. KDD99 is used by StreamKM++,
DStream, EDMStream,DenStream,CluStream, andDBStream. Sensor is used byDBStream. Besides
these three classical datasets, we added another recent dataset named Insects proposed in 2020 [35].
Second, although some prior works proposed synthetic datasets for evaluation, they are not publicly
available. To better evaluate the algorithm under changing workload characteristics as shown
in Table 4, we further designed two synthetic datasets, EDS and ODS. Specifically, EDS contains
varying frequencies of the occurrence of cluster evolution, while ODS contains a time-varying
number of outliers at different stages.
A detailed description of our selected workloads is provided as follows. FCT (Forest

CoverType) [1] contains tree observations from four areas of the Roosevelt National Forest in
Colorado. It is a high-dimensional dataset with 54 attributes. Every data point has its cluster label
representing its belonging tree type, and there are no outliers in the dataset. KDD99 [36] contains
a large volume of network intrusion detection stream data collected by the MIT Lincoln Laboratory.
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The dimension of this workload is also high, however, different from FCT , it contains a lot of outliers
and has been frequently used to test algorithms’ ability to identify outliers. Insects [35] is the most
up-to-date stream workload which is proposed in 2020. It is generated by an optical sensor that
measures insect flight characteristics and is specifically designed to test the clustering of evolving
data streams. Sensor [2] contains temperature, humidity, light, and voltage information collected
from sensors deployed in Intel Berkeley Research Lab. It is a low dimensional workload with only 5
attributes. Different from FCT , KDD99 and Insects, the frequency of cluster evolution is very high in
this workload. Thus, many prior works have used it to measure their algorithms’ ability to handle
cluster evolution [8, 13, 20]. EDS is a synthetic workload applied by some previous works [37] to
further study cluster evolution. It is made by combining three sub-synthetic datasets with different
cluster evolution frequencies. In our experiment, we divide EDS into five stages according to the
evolving frequency. Comparing algorithms’ behaviour from phase 1 to 5, we can further know the
changes in their clustering ability with the increase of cluster evolution frequency. ODS is also
made through the combinations of several sub-synthetic datasets with the same low dimension.
Different from EDS, the second half part of ODS is purely made up of outliers. We can hence further
analyze algorithms’ clustering ability under various numbers of outliers using ODS.

7.3 Benchmark Testbed
Many open-source projects have created frameworks or libraries for data stream mining, including
implementations for DSC algorithms, but they only support a biased subset of DSC algorithms and
are not easily extensible. For example, massive online analysis (MOA) [9] and scalable advanced
massive online analysis (SAMOA) [15] are popular data stream mining frameworks. However,
they do not provide a clear modular architecture to separate design aspects of DSC algorithms
making the extension to include novel algorithm design options difficult. Another repeating issue
in previous empirical studies of DSC algorithms [19] is that they do not clearly separate the data
producer (i.e., producing the data stream) and consumer (i.e., running the DSC algorithm) in their
experiments.

We made a good faith effort to implement various design choices of DSC algorithms in the same
testbed, called Sesame, written in C++. For a more realistic setting, Sesame is made up of three main
threads forming a pipeline for processing the data stream. The communication between threads is
realized via a shared-memory queue to eliminate the impact of network transmission.

(1) Data producer thread loads benchmark workloads in memory, and then continuously inserts
each input data point into a queue. We configure a high input arrival rate, i.e., every data point
arrives immediately, so that the algorithm does not spend time waiting for the input data.
(2) Data consumer thread runs a DSC algorithm to process the data stream. The input tuple is

continuously fetched from the queue to be processed. Temporal clustering results are produced
and sent to the next thread. All efficiency measurements are conducted in the second thread to
ensure a fair comparison among DSC algorithms. We use throughput for efficiency comparison.
We reference DStream, DBStream, CluStream and DenStream to corresponding papers and the
SAMOA benchmark [15, 21]. We reference BIRCH, StreamKM++, EDMStream, and SL-KMeans to
corresponding papers and their open-sourced code.

(3) Result collector thread is used to store the temporal clustering results produced from the second
thread. We run accuracy measurements in this thread to minimize the interference of efficiency
measurement. We use purity [16] to measure the general clustering quality and also use CMM [24]
to test the design aspects’ ability to handle cluster evolution.
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8 EXPERIMENTAL ANALYSIS
We now present our evaluation and analysis of the stream clustering design decisions discussed in
this paper. As pointed out by Hahsler et al. [20], average purity depends on the number of clusters.
We hence tune each of the algorithms such that the generated number of clusters is close to the
ground truth while maximizing its purity. Specifically, we apply a command line tool called ticat [3]
which automatically launches Sesame with different algorithms, datasets, and parameter settings.
We then select the parameter setting that leads to the highest clustering quality for every study
following the previous works [8, 13].
In the following, we first summarize our key findings in Section 8.1. We present our

comprehensive evaluation of every design aspect in Section 8.2 ∼ Section 8.5. Based on the
modularized experiments, we obtain a number of observations about the behaviour of every design
choice. To further verify these observations, we finally compare the behaviour of the eight existing
DSC algorithms and a novel DSC algorithm called Benne derived from our study in Section 8.6.

8.1 Key Findings
We summarize our key findings based on a number of observations in the experiment as follows:

K1 There is Still No Silver Bullet (O3-4, O6-8, O13-14, O16): For each design aspect, none
of the design choices can always guarantee good performance under varying workload
characteristics and/or optimization targets. In particular, workload characteristics such as
cluster evolution (O3-4, O6-7), outlier evolution (O6, O8, O13-O14), and workload dimensions
(O16) bring non-trivial impacts to stream clustering process. Notably, our results indicate
that (1) MCs and CFT guarantee high accuracy while CFT and DPT guarantee high efficiency for
handling cluster evolution than other types of data structure. (2) The efficiency of LandmarkWM
and DampedWM becomes worse with the increase of cluster evolution frequency. (3) Utilizing
a timer in outlier detection can greatly improve the clustering accuracy and even increase
the efficiency under outlier evolution (O13-14).

K2 It is Non-trivial to Determine the Best Overall Design (O1-3, O6, O15, O18): Each overall
design (i.e., a combined selection of design decisions from all design aspects) has its own
strength and limitation and none can achieve the highest accuracy and efficiency at the same
time. Notably, our results indicate that (1) Grids summarizing data structure and SlidingWM
window model can both guarantee a high clustering efficiency but low accuracy while AMS
and CoreT focus on high accuracy but achieve low efficiency (O1-2, O5). (2) Applying an
offline refinement strategy has little impact on both clustering accuracy and efficiency (O15).
(3) None of the existing algorithms is able to achieve high accuracy for workloads with high
cluster evolution frequency (O18). (4) Composing suitable design choices from each design
aspect, we obtain a novel DSC algorithm (i.e., Benne) that can be reconfigured to achieve
either the highest accuracy or highest efficiency, but not at the same time (O18).

K3 Algorithm Configuration and Correlations among Design Aspects Bring Further
Complex Influence on the Clustering Behaviour (O9-10, O17): In our experiment,
we find that different algorithm configurations bring non-trivial trade-offs in terms of
accuracy and efficiency (O9-10). Additionally, we observe that an unsuitable summarizing
data structure dominantly leads to poor performance of DSC algorithms regardless of the
selection of other design choices (O17), which indicates a main correlation among selections
of different design aspects influencing their clustering behaviour.
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Fig. 5. The Behaviour Comparison of Different Data Structures on Four Real-world Workloads.

8.2 Summarizing Data Structure
We first compare DSC algorithms’ behaviour with varying summarizing data structures. We fix
algorithms to use (1) LandmarkWM, (2) OutlierD-B, and (3) NoRefine. After that, we conduct
further experiments to specifically study the impact of key workload characteristics including
cluster evolution on the behaviour of different summarizing data structures.
General Comparison: The clustering behaviour of different summarizing data structures is shown
in Figure 5. There are four major observations:
O1: Both AMS and CoreT data structures focus on high accuracy at the cost of efficiency,
whereas Grids prioritizes efficiency over accuracy. As shown in Figure 5a and Figure 5b, AMS
and CoreT both achieve over 30 times higher purity but ∼80 times lower throughput than average.
As discussed in section 3.2, their similar behaviour is attributed to the frequent reconstruction of
the main structure, which improves the whole clustering quality but consumes too much time. On
the contrary, the throughput of Grids is ∼20 times higher than the average, which confirms its
higher efficiency. However, it achieves the lowest accuracy when compared with others on all four
workloads. As discussed in Section 3.2, this is due to its unique data insertion method, which saves
computation time, but leads to lower clustering accuracy. Grids may be useful when the user cares
more about the clustering efficiency.
O2: Hierarchical summarizing data structures can bring in better efficiency while
partitional structures bring higher accuracy. CFT, CoreT, and DPT are hierarchical structures,
while MCs, Grids, and AMS are partitional structures. It is clear to see that neither hierarchical nor
partitional structure can guarantee better accuracy and efficiency at the same time. The hierarchical
summarizing data structure (i.e., CFT, CoreT, and DPT) achieves comparable accuracy and is about
12 times faster than the partitional structures (i.e., MCs and AMS) except Grids. The selection of a
suitable structure is also determined by the optimization target. As discussed in Section 3, since no
information about the relationship between clusters is stored in a partitional structure, the algorithm
needs to check every existing cluster during data insertion. On the contrary, the algorithm with
a hierarchical structure only needs to search for a subset of child nodes (clusters) along the path
from the root node to the leaf nodes (clusters), which helps to achieve higher efficiency. However,
the hierarchical data structure may fail to find the optimally suitable cluster for insertion when
some of the hierarchical connection is misleading or outdated.
O3: The clustering accuracy and efficiency of summarizing data structure are highly
influenced by cluster evolution frequency. We observe that the clustering behaviour of
summarizing data structure varies significantly with different workload characteristics. In Figure 5a
and Figure 5b, we see that both MCs achieves ∼100% higher purity and CFT and DPT even achieve
∼200% higher throughput than average on Sensor workload with high cluster evolution frequency.

Proc. ACM Manag. Data., Vol. 1, No. 2, Article 162. Publication date: June 2023.



162:14 Xin Wang et al.

1 2 3 4 5
Phases of EDS Stream

0.0

0.5

1.0
CM

M

CFT MCs CoreT Grids DPT AMS

1 2 3 4 5
Phases of EDS Stream

0.0

0.5

1.0

CM
M

Fig. 6. CMM (EDS).

1 2 3 4 5
Phases of EDS Stream

0.0

0.5

1.0

Th
ro

ug
hp

ut

1e6
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Fig. 8. The Behaviour Comparison of Different Window Models on Four Real-world Workloads.

To better comprehend the impact of these workload characteristics, we use EDS workload to conduct
a further investigation as follows.
Cluster Evolution: The EDS workload has five phases with varying cluster evolution frequency.
In this study, we use CMM [24] as the accuracy metric instead of purity since it is specifically
designed to measure algorithms’ ability for handling cluster evolution. The results are shown in
Figure 6 and Figure 7. Grids achieves the lowest CMM but high throughput while AMS and CoreT
achieve great CMM but low throughput, which reaffirms our analysis in O1 and O2. Besides, there
is one additional observation as follows.
O4: MCs and CFT guarantee high accuracy while CFT and DPT guarantee high efficiency for
handling cluster evolution than other types of data structure. As shown in Figure 6, the CMM
of MCs and CFT are much higher than other types of data structures, this is due to their advanced
operations additionally provided to handle the evolving data stream. For efficiency comparison
on EDS according to Figure 7, it shows that MCs is not as fast as CFT since it is a partitional-based
structure, which has been discussed inO1. Moreover, as expected, DPT, which is specifically designed
for well detecting and adapting to cluster evolution [19], also outperforms others since it is also
able to partially adjust its structure for clustering the data stream.

8.3 Window Model
We next evaluate the window model. For all of these experiments, we fix the algorithms to use MCs
summarizing data structure. We begin with an analysis of different window models on real-world
workloads. After that, we specifically study two key workload characteristics, cluster evolution
efficiency and outlier number on their individual impacts.
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General Comparison: This experiment compares the behaviour of different types of window
models on four real-world workloads. According to the experimental results shown in Figure 8a
and Figure 8b, there are two general observations shown as follows.
O5: The SlidingWM achieves the lowest clustering accuracy but the highest efficiency
among the three types of window models. As shown in the figure, the SlidingWM achieves
∼30% lower purity but ∼110% higher throughput than LandmarkWM and DampedWM. As discussed in
Section 4.2, the higher efficiency and lower accuracy are attributed to the fixed size of the window,
which reduces the time for inserting the new data point but limited the clustering information
retained in the window. Our further investigation reveals that the SlidingWM always retains much
fewer cluster numbers than the DampedWM and LandmarkWM.
O6: The behaviour of a windowmodel is highly dependent on cluster evolution and outlier
evolution frequency in the workload. We can see that the purity of the LandmarkWM is over
∼100% higher on FCT but only ∼20% higher on the rest three workloads than the DampedWM and
SlidingWM. This difference in clustering behaviour on different workloads is attributed to the outlier
evolution according to table 4. In addition, the SlidingWM achieves ∼170% higher throughput than
the other two types on Sensor , the dataset with the highest cluster evolution frequency among the
four workloads. This difference on Sensor is quite larger than on the other three workloads. The
different behaviour of these window models on Sensor might be attributed to the impact of cluster
evolution frequency.
Cluster Evolution: We next evaluate the impact of cluster evolution frequency on the clustering
efficiency of different window models. For comparison, we record the throughput of handling every
phase of EDS with varying cluster evolution frequency. The comparison result is shown in Figure 9.
There is one major observations:
O7: The efficiency of LandmarkWM and DampedWM becomes worse with the increase of cluster
evolution frequency. The results show that the efficiency of the SlidingWM is not impacted by
the cluster evolution. However, for DampedWM and LandmarkWM, both of their throughputs keep
decreasing from above 100,000 tuples/sec to below 50,000 tuples/sec when cluster evolution becomes
more frequent from phases 1 to 5. Figure 10 shows the changes in the numbers of clusters on
handling EDS workload. As expected, the total number of clusters for the SlidingWM does not
fluctuate much, this is due to its fixed window length as discussed in O6. However, the number of
clusters for DampedWM and LandmarkWM keeps increasing from around 400 to 700 when processing
more and more data of EDS, this trend of sharp increase is due to their flexible window length,
which is not fixed in contrast to that of the SlidingWM. As discussed in Section 2.1, one of the major
cluster changes resulting from cluster evolution is the emergence of new clusters. For EDS, the
number of clusters becomes larger from phases 1 to 5. As a result, more clusters are captured by
LandmarkWM and DampedWM, decreasing their efficiency.
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Fig. 11. The Change of Behaviour When Tuning Different Window Settings.

Outlier Evolution:We then evaluate the impact of outlier evolution on the clustering accuracy
of different window models. Similar to the evaluation on EDS, we record the purity of handling
every phase of ODS with varying outlier evolution frequency. The comparison result is shown in
Figure 9. As discussed in O5, SlidingWM achieves the lowest purity. Additionally, we obtain one
major observation:
O8: LandmarkWM has a much better ability to accurately handle outlier evolution than other
types of window models. Surprisingly, as shown in Figure 9, the purity of LandmarkWM is ∼500%
higher than DampedWM on ODS. As discussed in Section 4.3, However, the fixed decay function of
DampedWM will lead to the false identification of outliers which should be either absorbed by those
expired clusters or become the start of a new cluster. On the contrary, the LandmarkWM treats every
historical data equally, which can better help the algorithm identify outliers in a wider time range,
especially when data needs to be inserted into some old clusters. Therefore, with the increase of
outlier evolution frequency, the LandmarkWM guarantees a higher accuracy.
Window Configuration Study: We now conduct a further study on the changes in clustering
behaviour with varying window configurations. Specifically, we evaluate the landmark and size
for the LandmarkWM and SlidingWM, respectively. For the DampedWM, we evaluate 𝛼 and 𝜆, which
are the key parameters of its decaying weight. Evaluation results based on the FCT workload are
shown in Figure 11 and there are two main observations.
O9:With the increase inwindow length, the clustering accuracy increases but the efficiency
decreases. We can see from the results that there is a non-trivial trade-off between clustering
accuracy and efficiency when tuning the landmark of LandmarkWM or the size of SlidingWM, which
reaffirms our analysis in Section 4.1 and 4.2. Since these two parameters control the length of the
corresponding window, they both show the common phenomenon that processing more data inside
the window will bring in better accuracy but lower efficiency. As discussed in O6, a larger window
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Fig. 12. The Behaviour Comparison of Different Outlier DetectionMechanisms on Four Real-worldWorkloads.

can store more temporal information bringing higher accuracy. However, more data points are
required for processing with increasing window length. Therefore, how to select the best window
length depends on the optimization target.
O10: The clustering efficiency keeps decreasing when the data point decays too fast.
Figure 11d and Figure 11c show the changes of two key parameters of the DampedWM’s decaying
weight on clustering accuracy and efficiency. Obviously, we can see that the increase of 𝜆 and
𝛼 (i.e., faster decay as discussed in Section 4.3), make efficiency worse. As discussed in O8, if
the data point decays too fast in the DampedWM, it is highly possible that many useful points are
regarded as outliers and frequently be discarded or moved into the outlier buffer, which is not only
time-consuming but also worse the clustering accuracy. For accuracy, we can see that it keeps
fluctuating when tuning the decaying weight, which reaffirms our previous analysis in O7 that
the fixed decaying configuration makes the damped window less capable to handle evolving data
stream. Therefore, for a better clustering quality, the decaying weight needs to be dynamically
tuned during the clustering procedure.

8.4 Outlier Detection Mechanism
We now evaluate different outlier detection mechanisms in detail. We first give a general comparison
of different mechanism combinations, and then we provide a detailed discussion on the impact of
two key workload characteristics. For these experiments, we used the MCs as the summarizing data
structure, use the LandmarkWM, and do not apply Refine.
General Comparison: The results of the general comparisons of different types of outlier detection
mechanisms are shown in Figure 12. There are three main observations as follows.
O11: Applying outlier detection mechanisms, especially with buffer greatly improves
clustering accuracy. Compared to NoOutlierD, applying outlier detection with or without a
buffer and/or a timer always brings ∼10% higher accuracy, even for workloads without outliers at
the end of processing (i.e., FCT , Insects, and Sensor). This is because all workloads contain “temporal
outliers” during the processing, while those outliers may transform into clusters upon finishing
processing. We also note that a buffer brings higher accuracy and reduced efficiency, while a timer
brings higher efficiency and reduced accuracy. When they are utilized together, DSC algorithms
achieve ∼20% higher accuracy and comparable efficiency compared to NoOutlierD. Unfortunately,
not all DSC algorithms utilize outlier detection mechanisms, including the recent proposal such as
SL-KMeans.
O12: Counter-intuitively, applying an outlier detectionmechanismmay bring even higher
efficiency. Surprisingly, we can see from Figure 12b that the throughput of OutlierD (w/o buffer,
w/o timer) is even greater than NoOutlierD, which indicates that applying outlier detection even
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Fig. 13. The Behaviour Comparison of Different Outlier Detection Mechanism on ODS Workload.

improves the clustering efficiency of DSC algorithms. This is because many sparse clusters are
removed as a result of being detected as outliers, and thus the total number of online clusters
is reduced, reducing total workloads. However, when utilizing buffers in outlier detection (i.e.,
OutlierD-B and OutlierD-BT), the throughput decreases a lot. Therefore, for ensuring a high
clustering efficiency of the DSC algorithm, it is not recommended to apply a buffer for detecting
outliers.
O13: The behaviour of outlier detection mechanism is highly influenced by the outlier
evolution in the data stream. We find that the changing workload characteristic brings a
significant impact on outlier detection mechanisms. For example, OutlierD-T even achieves ∼30%
better efficiency and comparable accuracy than OutlierD only on KDD99 workload, which is the
workload with high outlier evolution frequency.
Outlier Evolution: We now evaluate the impact of the cluster evolution frequency on the impact
of outlier detection mechanisms. Similar to the previous experiment, we use ODS workload for
evaluation. According to the result shown in Figure 13, there is one major observation:
O14:Utilizing timers in outlier detection can greatly improve the clustering behaviourwith
the increase of outlier evolution frequency in the stream. From phases 1 to 5, OutlierD-T
achieves∼25% higher accuracy and∼5% higher efficiency than OutlierD. As discussed in Section 5.3,
utilizing timers in outlier detection helps to regularly delete the clusters which have not been used
or updated for a certain amount of time. When outlier evolution becomes more and more frequent
in the stream, many temporal clusters become outliers since they are not being updated. In this
case, deleting these outdated clusters with the help of a timer can not only reduce workloads, but
also reduces the possibility that some new data points are mis-grouped with those deleted outliers,
increasing accuracy. Therefore, utilizing a timer in outlier detection mechanisms is recommended,
especially with the increasing cluster evolution frequency in workloads.

8.5 Offline Refinement Strategy
Lastly, we study the impact of the offline refinement strategy. We configured the algorithms to use
MCs summarizing data structure, LandmarkWM window model and OutlierD-B outlier detection
mechanism.
General Comparison: In this experiment, we use KMeans++ [27] and DBSCAN [17] to implement
distance-based and density-based offline refinement strategies (i.e., Refine), respectively. Results
are shown in Figure 14. There is one main observation as follows:
O15: In most cases, applying offline refinement is unnecessary as it does not bring any
improvement to the clustering results. As shown in Figure 14, both distance-based and density-
based refinement strategies do not bring accuracy or performance improvements. In fact, the

Proc. ACM Manag. Data., Vol. 1, No. 2, Article 162. Publication date: June 2023.



Data Stream Clustering: An In-depth Empirical Study 162:19

FCT KDD99 Sensor Insects
0.2
0.4
0.6
0.8
1.0

Pu
rit

y

NoRefine Refine [Distance-based] Refine [Density-based]

FCT KDD99 Sensor Insects
0.2
0.4
0.6
0.8
1.0

Pu
rit

y

(a) Accuracy

FCT KDD99 Sensor Insects0

5

Th
ro

ug
hp

ut

1e5

(b) Efficiency

Fig. 14. The Behaviour Comparison of Different Offline Refinement Strategies on Four Real-world Workloads.
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Fig. 15. The Behaviour Comparison when Turning On or Off the Offline Refinement Strategy of Two Existing
Algorithms.

density-based refinement strategy brings even worse accuracy. This is surprising since many
existingDSC algorithms [4, 5, 20, 37] have applied either distance-based or density-based refinement
strategies into their clustering procedure as discussed in Section 6.
To get a better understanding of the phenomenon, we select two existing algorithms,

StreamKM++ [4] and DenStream [37], covering two types of Refine strategies. For comparison,
we disabled the Refine in these two algorithms and test the changes in their clustering behaviour.
In Figure 15, we found that both algorithms’ accuracy and efficiency are not influenced by their
offline refinement strategy for all workloads. This result contradicts the common wisdom [5] and
encourages DSC algorithms without Refine.

8.6 Overall Algorithm Comparison
To verify the previous observations on four design aspects, we performed the last group of
experiments for overall comparison among DSC algorithms. In addition to the eight DSC algorithms
listed in Table 3, we propose a novel DSC algorithm called Benne, derived by composing suitable
design choices from four design aspects.

8.6.1 How Benne Works? The high-level execution flow of Benne is presented in Algorithm 1. The
overall execution follows a two-phase execution strategy. In the online phase, aWindow Fun. is
first applied to collect the most recent data for clustering (Line 2). The Window Fun. (Algorithm 2)
invokes different computing logic depending on the selected type of window model as described in
Section 4. After that, the algorithm runs the outlier detection mechanism, to detect if the current
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Algorithm 1: Execution flow of Benne.
Data: 𝑝 // Input point

Data: 𝑠 // Summarizing data structure

Input: 𝑠𝑡𝑟𝑢𝑐. // Selected type of summarizing data structure

Input: 𝑤𝑖𝑛. // Selected type of window model

Input: 𝑜𝑢𝑡 . // Selected type of outlier detection mechanism

Input: 𝑟𝑒 𝑓 . // Selected type of refinement strategy

// Online Phase

1 while !stop processing of input streams do
2 Window Fun. (...);
3 if 𝑜𝑢𝑡 . != NoOutlierD then
4 𝑏← Outlier Fun. (...);
5 if 𝑏 = false then
6 Insert Fun. (...)// Insert 𝑝 to 𝑠 and update 𝑠

7 else
8 Insert Fun. (...)// Insert 𝑝 to 𝑠 and update 𝑠

// Offline Phase

9 if 𝑟𝑒 𝑓 . != NoRefine then
10 Refine Fun. (𝑟𝑒 𝑓 .);

Algorithm 2:Window Fun. of Benne.
/* 𝑐: counter (initialized with 0), 𝑚: landmark, 𝑤𝑠: sliding window size, 𝑑𝑐 = (𝛼, 𝜆): decay parameters */

1 Function Window Fun.(𝑠 ,𝑚, 𝑤𝑠 , 𝑑𝑐):
2 𝑐++;
3 if 𝑤𝑖𝑛. = LandmarkWM then
4 if 𝑐 >𝑚 then
5 Sink the clustering results from 𝑠 ;
6 Clear all of the clustering information;
7 𝑚←𝑚𝑛𝑒𝑥𝑡 ; /* update current landmark */

8 else
9 if 𝑤𝑖𝑛. = DampedWM then
10 Update weight with 𝑑𝑐 ;
11 else // 𝑤𝑖𝑛. = SlidingWM
12 if 𝑐 > 𝑤𝑠 then
13 Remove the earliest point from window;

input point (𝑝) is an outlier. Specifically, if outlier detection is enabled (Line 3), then the Outlier
Fun. (Algorithm 3) is invoked (Line 4). The Outlier Fun. executes different logics depending on the
selected outlier detection mechanisms (i.e., w/ or w/o buffer and timer) as discussed in Section 5.
The input point will then be added to the summarizing data structure if it is not identified as an
outlier (Line 6) or the algorithm does not use any outlier detection mechanisms (Line 8). We omit
the corresponding pseudocode of the Insert Fun. as it similarly follows our discussion in Section 3.
When there is no more input data to process, the algorithm enters the offline phase. An offline
refinement of the clustering results can be applied (Line 8) as discussed in Section 6. For simplicity,
we also omit the corresponding pseudocode of the Refine Fun.. Being a generic algorithm, Benne can
be easily reconfigured into different variants by setting different types of 𝑠𝑡𝑟𝑢𝑐.,𝑤𝑖𝑛., 𝑜𝑢𝑡 ., and 𝑟𝑒 𝑓 .,
respectively. To achieve the highest accuracy, Benne (Accuracy) is made up of MCs summarizing data
structure, LandmarkWM, OutlierD-B, and NoRefine. In contrast, to achieve the highest efficiency,
Benne (Efficiency) is made up of Grids summarizing data structure, LandmarkWM, OutlierD-T, and
NoRefine.
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Algorithm 3: Outlier Fun. of Benne.
/* 𝐵𝑢𝑓 𝑓 𝑒𝑟: outlier buffers, 𝑡: timer threshold, 𝑑: density threshold */

1 Function Outlier Fun.(𝑝 , 𝑠 , 𝐵𝑢𝑓 𝑓 𝑒𝑟 , 𝑡 , 𝑑):
2 if 𝑜𝑢𝑡 . = (OutlierD-B Or OutlierD-BT) then

/* use buffer optimization */

3 if (𝑝 Is Outlier) = true then
4 Select cluster 𝑐𝑙 closest to 𝑝 from 𝐵𝑢𝑓 𝑓 𝑒𝑟 ;
5 Insert 𝑝 to 𝑐𝑙 and update 𝑐𝑙 ;
6 bool 𝑑𝑒𝑛𝑠𝑒 ← Check (𝑐𝑙 );

/* check if 𝑐𝑙 is dense enough */

7 if 𝑑𝑒𝑛𝑠𝑒 = true then
8 Move 𝑐𝑙 from 𝐵𝑢𝑓 𝑓 𝑒𝑟 to 𝑠 ;

9 if REGULAR CHECK TRIGGERED then
10 𝑐𝑙𝑠 ← Extract(𝑠);/* extract all clusters from 𝑠 */

11 for 𝑐𝑙 ∈ 𝑐𝑙𝑠 do
12 bool 𝑎𝑐𝑡𝑖𝑣𝑒 = false;
13 bool 𝑑𝑒𝑛𝑠𝑒 ← Check (𝑐𝑙, 𝑑);

/* check if 𝑐𝑙 is dense enough */

14 if 𝑜𝑢𝑡 . = (OutlierD-T Or OutlierD-BT) then
/* use timer optimization */

15 bool 𝑎𝑐𝑡𝑖𝑣𝑒 ← Check(𝑐𝑙 .𝑡𝑖𝑚𝑒𝑟, 𝑡 );
/* check if 𝑐𝑙 is active enough */

16 if 𝑑𝑒𝑛𝑠𝑒 = false and 𝑎𝑐𝑡𝑖𝑣𝑒 = false then
17 if BUFFER ENABLED then
18 Insert 𝑐𝑙 to 𝐵𝑢𝑓 𝑓 𝑒𝑟 ;
19 Remove 𝑐𝑙 from 𝑠 ;

20 if OutlierD-BT then
21 for 𝑐𝑙 ∈ 𝐵𝑢𝑓 𝑓 𝑒𝑟 do
22 bool 𝑎𝑐𝑡𝑖𝑣𝑒 ← Check(𝑐𝑙 .𝑡𝑖𝑚𝑒𝑟, 𝑡 );
23 if 𝑎𝑐𝑡𝑖𝑣𝑒 = false then
24 Remove 𝑐𝑙 from 𝐵𝑢𝑓 𝑓 𝑒𝑟 ;

25 Return (𝑝 Is Outlier);
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Fig. 16. The Behaviour Comparison of Eight Existing DSC Algorithms on Four Real-world Workloads.

8.6.2 Comparison Results. We now compare the selected eight algorithms and Benne for handling
four real-world workloads. Results are shown in Figure 16. We obtain a list of observations, mostly
reaffirming our previous analysis. From the summarizing data structure aspect, we can see that
SL-KMeans achieves the lowest efficiency and DStream has the highest one on all workloads
efficiency. And, both of their accuracies are not satisfying. This reaffirms our previous observations
O1 and O2 since SL-KMeans applies the AMS, and DStream applies Grids as their data structure
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respectively. Besides, StreamKM++, BIRCH and EDMStream achieve relatively higher accuracy
than others, which matchesO3 for their summarizing data structures are hierarchical-based. Finally,
BIRCH achieves the highest accuracy on Sensor workload with high cluster evolution frequency.
This reaffirms our previous analysis on O4-5.

From the window model aspect, we can see that algorithms with a DampedWM, including
DenStream, DBStream, DStream and EDMStream all achieve poor clustering accuracy on KDD99
workload, which reaffirms our previous discussion on O7-8. Moreover, the efficiency of BIRCH and
EDMStream is poor on the Sensor workload, which matches our analysis discussed in O9-10 as
these two algorithms apply LandmarkWM and DampedWM, respectively. EDMStream uses OutlierD-B,
which consumes even more execution time during clustering.

From the outlier detection mechanism aspect, we can see that the accuracy of EDMStream,
which utilizes OutlierD-B, is higher than many other algorithms such as DBStream and DStream
without using a buffer. This partially reaffirms the previous discussion of O13. However, its
throughput is lower than the average, which is also caused by the overhead of maintaining the
buffer as discussed in O14. Additionally, CluStream, DBStream, DStream, DenStream achieves
high clustering efficiency on Sensor , which partially reaffirms O15-16 since they apply timers for
detecting outliers.
Finally, from the offline refinement strategy aspect, we can see that there is no clear difference

between those without Refine strategies such as BIRCH, EDMStream and SL-KMeans and
those with Refine strategies, such as StreamKM++ and DenStream. This matches O17 that it is
unnecessary to use offline refinement for the clustering of data streams.

Apart from reaffirming our previous analysis, we make three additional observations as follows.
O16: The clustering behavior of DSC algorithms is affected by workload dimensions.
Despite the significant differences among DSC algorithms, they all achieve lower throughput for
higher workload dimensionalities. We observe that the complexity of many operations is highly
related to workload dimension, such as updating the summarizing data structure and searching for
the suitable cluster for data insertion based on distance. Therefore, with the increase of workload
dimension, more time is spent on these operations bringing down the clustering efficiency. Higher
dimensional workloads are expected to be harder to cluster correctly due to the well-known Curse of
Dimensionality issue. However, we observe that algorithms achieve higher purity for handling high
dimensional workloads (FCT and KDD99). We suspect that dimensionality is not a dominant factor
for the clustering accuracy here. Nevertheless, we plan to evaluate the impact of dimensionality
with more extensive datasets in future.
O17: The selection of summarizing data structure has a large impact on the clustering
behaviour of window models. First, as discussed in O6, the SlidingWM guarantees a better
clustering efficiency. However, although SL-KMeans utilizes a SlidingWM, its efficiency is still poor
due to the usage of the AMS data structure. Second, as discussed inO9, the DampedWM achieves poorer
efficiency with the increase of cluster evolution frequency. However, the efficiency of CluStream
and DBStream, both of which use the DampedWM, is higher than others on handling Sensor workload.
We observe that it is because of the usage of MCs, which guarantees a high clustering efficiency as
discussed in O5. When selecting the proper window model, we should also take the selection of
summarizing data structure into consideration.
O18: By selecting suitable design choices, we are able to compose a novel algorithm called
Benne, which can either achieves the highest accuracy or highest efficiency compared
to the state-of-the-art on all real-world workloads. As shown in Figure 16, Benne (Accuracy)
and Benne (Efficiency) achieve ∼12% and ∼100% higher accuracy and throughput, respectively,
than any of the existing DSC algorithms on all real-world workloads. Nevertheless, we are not
able to compose an algorithm that achieves the highest accuracy and efficiency at the same time,
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reaffirming our analysis that existing design options are trading off between accuracy and efficiency.
Moreover, there is still a large room for further improvement as none of the DSC algorithms
including Benne is able to achieve good accuracy results for handling the Sensor workload. We
envision novel DSC algorithms to be designed in future, to better handle workloads with high
cluster evolution frequency such as Sensor .

9 RELATEDWORK
In the following, we first discuss the previous experimental studies on data stream clustering, then
we outline related research efforts divided into the four key design aspects of DSC algorithms.

Previous Experimental Study. To the best of our knowledge, there are only two existing
empirical studies on DSC algorithms [13, 28]. The first is proposed in 2017 [13]. In this work, the
researchers implement ten popular DSC algorithms in R with interfaces to C++, and evaluate their
clustering accuracy on workloads with varying cluster shapes. It lacks the efficiency comparison,
which is at least equally important as the clustering accuracy. The second study [28] discussed the
impact of some DSC design aspects in their evaluation. However, their experiment is based on a
coarse-grained algorithm comparison rather than studying the impact of each design aspect in
depth. Both prior studies are not sufficient to comprehend the behaviours of DSC algorithms under
varying characteristics of data stream workload and provide fine-grained insights into the four
algorithm design aspects.

Summarizing Data Structure. Proposing better data structures for summarizing data streams
has received much attention in the literature. Zhang et al. [39] proposed Clustering Feature Tree
(CFT) with incrementality and additivity properties well suited for streaming workloads. Aggarwal
et al. [5] propose to extend CF structure and call it microclusters (MCs) with additional summary
information about timestamps and respective weight, which are used to cooperate with the window
models. Differs significantly from CFT, Ackermann et al. [4] proposed the Coreset Tree (CoreT),
which utilizes a merge-and-reduce algorithm over the binary tree, in order to reduce leaf objects in
the tree. Chen et al. [14] proposed to use of a grid data structure, rather than a tree-like structure
for efficiency concerns. In contrast, Gong et al. [19] proposed Dependency Tree (DPT) that can
deliver satisfying efficiency and high accuracy at the same time. Nevertheless, we observe that
DPT leads to sub-optimal results in accurately handling cluster evolution. Most recently, Borassi et
al. [10] proposed Augmented Meyerson Sketch (AMS) for stream clustering claiming it performs
empirically better than analytic bounds. However, we found that AMS is not a good choice for the
clustering of data streams, due to its unsatisfying accuracy and low efficiency compared with other
data structures.
Window Model. Various window models are proposed in DSC algorithms to determine the

subset of (potentially infinite) data streams to be involved in processing. Metwally et al. [31]
proposed the landmark window model (LandmarkWM) that defines data arriving after the landmark
is kept. Considering the most recent records to be more critical, Zhou et al. [40] and Borassi et
al. [10] propose to store only the most recent data in the stream, which leads to the sliding window
model (SlidingWM). Cao et al. [12] and Chen et al. [14] proposed the damped window model
(DampedWM), which keeps all the data while still maintaining interest in the most recent information,
by associating each object with different weights. Different from the aforementioned two window
models, DampedWM better captures the dynamic changing of clusters, ensuring a higher quality in
clustering. To the best of our knowledge, there is still a lack of an in-depth study that compares the
efficiency and/or accuracy impacts of different window models using a comprehensive benchmark
until our work.
Outlier Detection Mechanism. Outlier detection aims to identify objects that deviate from

others, it is one crucial design aspect in many DSC algorithms. As early as BIRCH [38] has one
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optional phase of scanning its data storage and looking for outlier candidates whose object density
is lower than the threshold, and it periodically checks whether the entries in outlier candidates can
be absorbed back into the real clusters. Aggarwal et al. [5] introduce outlier timer to better identify
outliers (OutlierD-T). Wan et al. [37] further introduce the concept of outlier buffer (OutlierD-B)
to ease the transformation between outliers and clustered points. We observed that the timer
mechanism can also be used along with the buffer to identify and discard outlier candidates
which have not been updated for a long time. However, unlike ours, there is no prior study to
comprehensively evaluate the usage of outlier timer, outlier buffer, and their combinations.

Offline Refinement Strategy. Since the first mention by Aggarwal et al. [5] in their proposed
online-offline scheme for stream clustering, most subsequent DSC algorithms require offline
refinement strategies (Refine) to get better final results. Frequently used clustering algorithms for
offline refinement include KMeans [27] and its many variants such as Scalable k-means [11] and
Singlepass k-means [18]. In contrast to common belief, our evaluation results show that adopting
offline refinement is often unnecessary and only brings overheads.

10 CONCLUSION
In this paper, we present results from an extensive experimental analysis of different design choices
of DSC algorithms. With a more realistic benchmark configuration and a detailed in-depth analysis,
we are able to identify many important insights that have not been revealed in prior studies. Our
findings even promote a novel DSC algorithm Benne, which can be configured by making a flexible
decision at each design aspect to achieve either the highest accuracy or highest efficiency compared
to the state-of-the-art DSC algorithms on all real-world workloads. Given the encouraging results,
we envision that our work will motivate future studies in terms of optimizing or developing new
DSC algorithms.
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