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Transactional stream processing engines (TSPEs) differ significantly in their designs, but all rely on non-
adaptive scheduling strategies for processing concurrent state transactions. Subsequently, none exploit
multicore parallelism to its full potential due to complex workload dependencies. This paper introduces
MorphStream, which adopts a novel approach by decomposing scheduling strategies into three dimensions
and then strives to make the right decision along each dimension, based on analyzing the decision trade-offs
under varying workload characteristics. Compared to the state-of-the-art, MorphStream achieves up to 3.4
times higher throughput and 69.1% lower processing latency for handling real-world use cases with complex
and dynamically changing workload dependencies.
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1 INTRODUCTION
Many emerging stream applications [2, 9, 25, 34] rely on the support of shared mutable states,
where application states may be concurrently read and modified by multiple threads during stream
processing. Those applications are challenging to be supported correctly [11] and/or efficiently [41]
in today’s mainstream stream processing engines (SPEs), such as Storm [31], Flink [10], and Spark-
Streaming [39]. In response, transactional SPEs (TSPEs) have been recently proposed with built-in
support of shared mutable states and have received much attention from academia [3, 22, 41] and
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Fig. 1. Streaming Ledger (SL) – An example application scenario of TSPEs [1].

industry [1]. Different from conventional SPEs, TSPEs adopt transactional semantics during the
processing of continuous data streams, where accesses to shared mutable states are modelled as
state transactions. Subsequently, the concurrent process of state transactions must be scheduled to
ensure some form of transactional semantics in TSPEs.
Motivating Example. Figure 1 illustrates a running example of a simplified use case that

benefits from TSPEs, namely Streaming Ledger (SL), which was suggested by a recently announced
commercialized version of Apache Flink [1]. Unlike batch-based ledger systems, it processes a
stream of requests involving wiring money and assets among users and outputs the processing
results as an output stream to users. Two types of state transactions accessing two tables of shared
mutable states are generated during the processing of each input request: (1) a Transfer transaction
processes a request that transfers balances between user accounts and assets; and (2) a Deposit
transaction processes requests that top-up user accounts or assets. The processing of all concurrent
state transactions needs to ensure transactional semantics. For instance, a state transaction may be
aborted due to the violation of a consistency property, such as that the account balance can not
become negative. We will demonstrate that Flink, a popular SPE, achieves orders of magnitude
lower throughput in handling this use case, compared to any of the existing TSPEs.
The Problem: Non-Adaptive Scheduling Strategies. Existing TSPEs [3, 22, 41] differ

significantly in their concurrent execution approaches but all rely on some non-adaptive scheduling
strategies. S-Store [22] is a recent TSPE built upon extending H-Store [29] with streaming
capabilities. It adopts a coarse-grained processing paradigm (state partitioning) by scheduling
transactions into pre-split state partitions. It has low context switching overheads and can handle
the transaction abort as early as it happens. However, as parallelism increases, the intensification of
access conflicts among state partitions severely limits the system performance [41]. TStream [41]
outperforms S-Store on multicore architectures with a transaction restructuring paradigm. In
TStream, state access conflicts are avoided as much as possible by decomposing transactions into
atomic operations, which can run in parallel. However, it adversely affects the efficient handling
of transaction abort and complex data dependencies in the workload. As a result, they often
involve large synchronization and unnecessary state transaction aborting overhead. None of the
existing TSPEs can maximize performance under different and dynamically changing workload
characteristics, such as the varying ratio of aborting transactions and changing state access
distribution.
The Solution:MorphStream. In this paper, we propose a novel adaptive scheduling strategy

for TSPEs by mapping the state transaction scheduling problem to a graph scheduling problem.
This allows us (1) to find the best trade-off for selecting a suitable scheduling strategy for a given
workload and (2) to employ multiple scheduling strategies concurrently, where each is applied to a
subset of workloads. We introduce MorphStream thatmorphs multiple scheduling strategies in
transactional stream processing. We open-sourceMorphStream at https://github.com/intellistream/
MorphStream.
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Different from existing TSPEs, MorphStream identifies the fine-grained temporal, logical, and
parametric dependencies among state access operations of a batch of state transactions. Then, it
maps the workloads with dependencies into a task precedence graph (TPG), where vertexes map to
state access operations, and edges map to fine-grained dependencies among operations. The key
point is that, based on the TPG, we can decompose the scheduling strategy into three dimensions
of scheduling decisions: 1) structured or non-structured exploration strategies, 2) single operation
or group of operations as the unit of scheduling, and 3) lazy or eager abort handling mechanisms.
Subsequently, MorphStream can adaptively switch to a different scheduling strategy by making
suitable scheduling decisions in each dimension. Based on analyzing the decision trade-offs under
varying workload characteristics, we propose a heuristic-based decision model that leverages the
properties of TPG to guide MorphStream to make the correct scheduling decision at runtime.

Compared to existing solutions such as TStream [41] and S-Store [22], MorphStream involves a
much more complex dependency identification and resolving mechanism. To address this issue,
we further design a two-step TPG construction mechanism to create a TPG for every batch of
state transactions in parallel with low overheads. To efficiently ensure the correctness during the
exploration of the TPG, we propose a stateful TPG implementation, where each vertex in the TPG
is further annotated with a finite state machine. MorphStream tracks the state transition (e.g., ready
to process, executed, or aborted) to guarantee a correct schedule while making dynamic scheduling
decisions.

In summary, this work makes the following technical contributions:
• In Section 3, we formally define the transaction scheduling problem in TSPEs. We then map
the transaction scheduling problem to a graph scheduling problem.

• In Section 4, we discuss how to decompose the scheduling decision into three dimensions,
including exploration strategies, scheduling unit granularities, and abort handling mechanisms.
We also propose a heuristic-based decision model to make a suitable scheduling decision
under varying workload characteristics at runtime.

• To reduce TPG construction overhead and the adaptive scheduling overhead, we further
propose parallel TPG construction mechanisms and an efficient stateful TPG implementation
(Section 5).

• We experimentally demonstrate that (1)MorphStream brings up to 3.4 times higher throughput
and 69.1% lower latency for handling real-world use cases, and (2) MorphStream is able to
select a better-performing scheduling strategy under changing workload characteristics
(Section 6).

2 PRELIMINARIES
In this section, we first discuss some preliminaries of transactional stream processing (TSP). Then,
we summarize three types of workload dependencies in TSP applications.

2.1 Transactional Stream Processing
Different from traditional stream processing engines (SPEs), such as Storm [31] and Flink [10],
transactional SPEs (TSPEs) [1, 4, 5, 9, 12, 16, 21] allow the system to maintain shared mutable states,
to which multiple execution entities (i.e., threads) can reference and update. Shared mutable states
are preallocated in memory. When there is a new state, the preallocated spaces are expanded
accordingly before processing. We generally follow the definitions in prior work [22, 41] and briefly
recall them for completeness.

Definition 1 (State Access Operation). A state access operation is a read or write operation
to shared mutable states, denoted as 𝑂𝑖 = 𝑅𝑒𝑎𝑑𝑡𝑠 (𝑘) or𝑊𝑟𝑖𝑡𝑒𝑡𝑠 (𝑘, 𝑣). The key 𝑘 is usually determined
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Table 1. Summary of terminologies

Type Notation Definition

System
Specific

𝑡𝑥𝑛𝑡𝑠 State Transaction
𝑂𝑖 State access operations
TD Temporal Dependency
PD Parametric Dependency
LD Logical Dependency
TPG Task Precedence Graph (𝑉 , 𝐸)

Scheduler
Specific

s-explore Structured Exploration
ns-explore Non-Structured Exploration
f-schedule Fine-grained Scheduling Unit
c-schedule Coarse-grained Scheduling Unit
e-abort Eager Aborting
l-abort Lazy Aborting

Workload
Characteristics

𝑇 Number of Transactions
𝑙 Transaction Length
𝑎 Ratio of Aborting Transactions
\ State Access Distribution
𝑟 #State Access Per Operation
𝐶 Complexity of a UDF

by the corresponding input event1, while the value 𝑣 may depend on the value of a list of states, i.e., 𝑣
= 𝑓 (𝑘1, 𝑘2, ..., 𝑘𝑚), where 𝑓 is a read-only user-defined function. Timestamp 𝑡𝑠 is defined as the time of
its triggering input event, while 𝑘 denotes the state to read or write, and 𝑣 denotes the value to write.

Note that, insert and delete are treated as write operations. Essentially, an insert updates the
value of the corresponding state, while a delete marks the corresponding state to be invalid. The
concurrent accesses (i.e., read and write) to the shared mutable states must satisfy predefined
constraints to ensure some form of transactional semantics.

Definition 2 (State Transaction). The set of state access operations triggered by the processing
of one input tuple is defined as one state transaction, denoted as 𝑡𝑥𝑛𝑡𝑠 = < 𝑂1, 𝑂2, ... 𝑂𝑛 >. Operations
of the same transaction have the same timestamp. For brevity, we use the timestamp 𝑡𝑠 to differentiate
different state transactions.

In analogy to conventional transaction processing, TSPEs guarantee ACID properties [3]. In
addition, TSPEs need to ensure further that dependent state accesses strictly follow their timestamp
sequence [3, 11, 22, 41]. Specifically, a correct state transaction schedule can be defined as follows.

Definition 3 (Correct Schedule). A schedule (𝑆) of state transactions 𝑡𝑥𝑛𝑡1, 𝑡𝑥𝑛𝑡2, ..., 𝑡𝑥𝑛𝑡𝑛 is
correct if it is conflict equivalent to 𝑡𝑥𝑛𝑡1 ≺ 𝑡𝑥𝑛𝑡2 ≺ ... ≺ 𝑡𝑥𝑛𝑡𝑛 , where ≺ means that the left operand
precedes the right operand.

2.2 Workload Dependencies
A key objective to scale transactional stream processing is to maximize system concurrency
while maintaining a correct schedule. However, it is a nontrivial challenge due to complex inter-
and intra-dependencies among state transactions. By carefully analyzing many existing TSPE
applications [1, 6, 9, 22, 30, 34, 41], we have summarized workload dependencies into three types,
including logical, temporal, and parametric. In the following, we use the Streaming Ledger (SL) as a
running example involving three state transactions (𝑡𝑥𝑛1, 𝑡𝑥𝑛2, and 𝑡𝑥𝑛3) shown in Figure 2 for
illustration.
1The need to the handling of non-determined keys is rare and left as future work.
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Fig. 2. Dependencies in Streaming Ledger (SL).

Temporal Dependency (TD). State accesses must follow the event sequence, leading to temporal
dependencies among operations.

Definition 4. We define that 𝑂𝑖 temporally depends on 𝑂 𝑗 if they are not from the same state
transaction, but they access the same state, and 𝑂𝑖 has a larger timestamp.

For example, in Figure 2, 𝑂2 temporally depends on 𝑂1 as they access the same record with
different timestamps. Similarly,𝑂4 and𝑂5 temporally depend on𝑂3 and𝑂2, respectively. Note that
there is no temporal dependency among operations of the same transaction, as they are triggered
by the same input event with the same timestamp.

Parametric Dependency (PD). There is a parametric dependency between two write operations
when 𝑣 of one operation depends on the execution of another operation.

Definition 5. We define that 𝑂𝑖 = 𝑊𝑟𝑖𝑡𝑒 (𝑘𝑖 , 𝑣), where 𝑣 = 𝑓 (𝑘1, 𝑘2, ..., 𝑘𝑚), parametrically
depends on 𝑂 𝑗 =𝑊𝑟𝑖𝑡𝑒 (𝑘 𝑗 , 𝑣 ′) if 𝑘 𝑗 ≠ 𝑘𝑖 , 𝑘 𝑗 ∈ 𝑘1, 𝑘2, ..., 𝑘𝑚 , and 𝑂𝑖 has a larger timestamp.

Taking 𝑂3 in 𝑡𝑥𝑛2 as an example, it should be noted that whether the write is allowed depends
on a user-defined function related to 𝐴 and 𝑉 , such as the transferring amount (𝑉 ) should be less
than the balance of the source account (𝐴). Hence, 𝑂3 depends on the state of 𝐴, as indicated by
𝑓3 (𝐵,𝐴,𝑉2). Therefore, 𝑂3 parametrically depends on 𝑂1. Similarly, 𝑂5 parametrically depends on
𝑂3.

Logical Dependency (LD). To guarantee ACID, aborting one operation shall lead to aborting all
operations of the same state transaction. This can be guaranteed during transaction commit by
tracking a logical dependency among operations of the same transaction (Section 4.3).

Definition 6. We define that two operations 𝑂𝑖 and 𝑂 𝑗 logically depend on each other if they
belong to the same state transaction.

For example, in 𝑡𝑥𝑛2 and 𝑡𝑥𝑛3, the transfer must either change both accounts or neither. Hence,
𝑂3 and 𝑂5 logically depend on 𝑂2 and 𝑂4, and vice versa. If there is sufficient balance in the source
account, 𝑂2 (𝑂4) will subtract the transferred amount from it, and 𝑂3 (𝑂5) will add the same value
to the target account. Otherwise, the entire transaction shall be aborted.

Proc. ACM Manag. Data., Vol. 1, No. 1, Article 59. Publication date: May 2023.



59:6 Yancan Mao et al.

3 THE MORPHSTREAM APPROACH
In this section, we discuss how we map the state transaction scheduling problem to a graph
scheduling problem, and outline the solution overview of MorphStream.

3.1 Problem Mapping
Lemma 1. Processing all operations of a list of state transactions 𝐿 following the three types of

dependencies defined in Definition 4, 6, and 5 guarantees a correct schedule.

Proof Sketch: According to the conflict serializability theorem [35], MorphStream is conflict-
serializable if and only if its conflict graph of schedules, where transactions are nodes and
conflict relations (i.e., read/write conflicts or data dependencies among transactions) are edges, is
always acyclic. This is always true when state transactions are scheduled following three types of
dependencies in MorphStream. First, the read/write conflicts are captured by TDs and PDs. TDs/PDs
are ordered by timestamp sequences, i.e., for any two operations𝑂𝑖 and𝑂 𝑗 , if𝑂 𝑗 has PDs/TDs on𝑂𝑖 ,
then the timestamp of 𝑂 𝑗 is greater than 𝑂𝑖 . Thus, a cycle between any two operations will violate
the time-ordered property of TDs/PDs, and can not exist in MorphStream. Second, LDs are among
operations of the same transaction, and will not lead to conflict relations among transactions.
MorphStream is hence conflict-serializable. Further committing (or aborting) according to LDs
guarantees ACID.

Task Dependency Graph (TPG). Motivated by Lemma 1, we map a batch of state transactions
to a task dependency graph (TPG). For example, in Figure 2, 𝑂1 ∼ 𝑂5 and the dependencies among
them naturally form a TPG.

Definition 7. Given a list of state transactions 𝐿 = <𝑡𝑥𝑛𝑡1, 𝑡𝑥𝑛𝑡2, ..., 𝑡𝑥𝑛𝑡𝑛>, MorphStream
constructs a task precedence graph𝑇𝑃𝐺 = (𝑉 , 𝐸) such that there is a one-to-one mapping of one vertex
𝑣𝑖 in𝐺 to one operation𝑂 𝑗 ∈ 𝑡𝑥𝑛𝑡𝑖 , where 𝑡𝑥𝑛𝑡𝑖 ∈ 𝐿. The three types of dependencies among operations
are one-to-one mapped to edges among vertexes, denoted as 𝑒 (𝑣𝑖 , 𝑣 𝑗 , 𝐷), where 𝐷 ∈ {TD, LD, PD}.

Transaction Scheduling based on the TPG. In analogy to the task graph scheduling
problem [24], a vertex 𝑣𝑖 may not be able to be scheduled due to unsolved dependencies (i.e.,
incoming 𝑒 of 𝑣𝑖 ). Given Lemma 1, scheduling tasks (i.e., 𝑣𝑖 ) for concurrent execution according to
dependencies (i.e., 𝑒𝑖 ) ensures that the resulting transaction schedule is correct. Different schedules
may lead to different completion times due to 1) varying execution concurrency, 2) varying context
switching overhead, and 3) varying wasted computational overheads due to aborts. Hence, the goal
of MorphStream is to identify a correct schedule that minimizes overall completion time, which can
be defined as follows.

Definition 8. Given a TPG 𝐺 = (𝑉 , 𝐸) constructed by a list of state transactions 𝐿, the optimal
correct schedule is the schedule of operations (i.e., 𝑣) such that the overall completion time isminimized,
while the dependency constraints are enforced.

The task graph scheduling problem, in its original form, is NP-complete [24]. There are many
existing heuristic solutions in the literature [14, 18, 19]. However, our transactional context makes
the scheduling problem quite different from the well-studied task graph scheduling problem. For
example, the generic task scheduling problem [24] assumes a known completion time of each
task a priori. In contrast, we can not make such an assumption, as each state access may take a
variable processing time due to the PDs with arbitrary user-defined functions. Furthermore, due to
the possibility of transaction aborting, the actual execution flow may vary arbitrarily, making the
scheduling a difficult (if not impossible) task to optimize with existing scheduling algorithms.
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Fig. 3. The execution workflow of MorphStream.

3.2 Solution Overview
Based on our problem mapping, we propose MorphStream, a novel TSPE that is able to scale even
under highly contended and dynamic workloads. More implementation details are discussed in
Section 5.
Programming Model. We follow the common programming model of TSPEs abstracted in

the following three steps [41]. These three steps are recursively conducted for every batch of
input events. (i) preprocess the input events, which will determine the read/write sets of the state
transactions. For example, in Figure 1, the system uses accID to determine the account record in the
Account Table. Note that, MorphStream does not support non-deterministic state transactions, such
as those with random keys. We leave the exploration of such features in future. (ii) state access,
where all state accesses are actually performed. (iii) postprocess, where the input event will be
further processed according to the access result, and the corresponding output will be generated. As
a stream processing system must keep the data moving [28], the output of the aborted transaction
is marked with “failed state access” to notify users, who can resubmit requests which become part
of new input events.
Execution Workflow. Based on the programming model, the execution workflow of

MorphStream is depicted in Figure 3. Similar to some prior works [41], MorphStream separates
transactional stream processing into two phases: stream processing and transaction processing.
It periodically switches between the two phases, separated by punctuations [32], guaranteeing
that no subsequent input event will have a smaller timestamp. During the stream processing
phase, 1 a batch of input events is preprocessed, and the generated state transactions are batched
to be processed. During the transaction processing phase, the batched state access is performed.
It relies on punctuation [33] to ensure that input events in subsequent batches have increasing
timestamps, while input events within a batch may arrive out-of-order. 2 MorphStream identifies
the fine-grained temporal, logical, and parametric dependencies within and among a batch of
state transactions to construct the corresponding TPG in parallel. Note that we partition the
TPG construction process (Section 5) into two steps during the stream processing phase and
the transaction processing phase. Subsequently, 3 threads schedule operations for concurrent
execution according to the constructed TPG (Section 4). 4 A decision model (Section 4.4) guides
MorphStream to make the most appropriate scheduling decisions at runtime, considering varying
workload characteristics. Upon finishing of transaction execution, final processing results as output
stream are generated during 5 the postprocess of input events based on the obtained shared mutable
state access results.
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Table 2. Scheduling decisions at three dimensions

Dimension Decision Pros Cons

Exploration Strategy s-explore Threads can run in parallel with
minimum coordination

BFS: Sensitive to workload imbalance /
DFS: High memory access overhead

ns-explore More parallelism opportunities Higher message-passing overhead
Scheduling Granularity f-schedule Better system scalability High context switching overhead

c-schedule Lower context switching overhead Less scalable and more sensitive to load
imbalance

Abort Handling e-abort Less wasted computing efforts High context switching overhead
l-abort Less context switching overhead More wasted computing efforts

0 1 2 3 4Rank

Operation

TD
LD
PD

Fig. 4. A stratified auxiliary structure of TPG.

4 EXPLORING SCHEDULING DECISIONS
In the following, we discuss how we decompose the scheduling based on the TPG into three
dimensions of scheduling decisions, namely exploration strategies (Section 4.1), scheduling unit
granularities (Section 4.2), and abort handling mechanisms (Section 4.3). Table 2 summarizes
scheduling decisions at each dimension. We also propose a heuristics decision model to make a
suitable scheduling decision based on the current workload characteristics at runtime (Section 4.4).

4.1 Exploration Strategies
Threads explore the TPG to pick up operations to process. There are generally two types of
exploration strategies, including (1) a structured approach following a depth-first or breadth-first
traversal strategy and (2) an unstructured approach based on random traversal with countdown
latches. Those exploration strategies involve varying synchronization overheads for workloads
with different properties.

4.1.1 Structured Exploration (s-explore). Following a prior work [23], to guide structurally
exploring the TPG, we first generate an auxiliary structure of the TPG as illustrated in Figure 4.
First, vertexes are partitioned into subsets such that vertexes are connected by a directed path
belonging to different subsets. Second, subsets are assigned rank such that for each edge, the rank
of the subset that contains the target of the edge is less than the rank of the subset that contains its
source. Subsets with the same rank are said to be in the same stratum, and the most outer stratum
is rank 0. Based on the stratified auxiliary structure, two structured exploration methods can be
applied to explore the TPG in analogy to the breadth- and depth-first search. In both ways, threads
are running in parallel with minimum coordination at runtime.
A) BFS-like Exploration: Like a BFS, a thread begins to explore operations at the most outer

stratum of TPG. All threads cooperatively explore operations of the same stratum in parallel. Only
when operations at one stratum are all processed can threads proceed to the next stratum for further
exploration. A barrier-based synchronization is thus required among threads. The effectiveness of
such a BFS-like exploration depends on the workload balance among threads, which is challenging
to ensure due to the random completion time of each operation as well as the potential aborts.
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Fig. 5. Different scheduling unit granularities.

B) DFS-like Exploration: For the DFS-like exploration, we first assign an equal number of
operations in every stratum to threads. During exploration, a thread may immediately proceed
to explore the next stratum once the dependencies of its assigned operations in the next stratum
are resolved. In this way, threads cooperate without relying on barriers at each stratum but only
on the dependencies of assigned operations. This reduces synchronization overhead, as a thread
waits for fewer threads before making progress, but it incurs a higher memory access overhead for
checking whether dependencies have been resolved.

4.1.2 Non-Structured Exploration (ns-explore). Instead of structurally exploring the TPG, threads
can randomly pick up operations, i.e., those with dependencies resolved. In this strategy, each thread
maintains a signal holder, which asynchronously receives and handles countdown latch signals from
other threads to manage the resolution of dependencies of the remaining operations. Specifically,
when an operation 𝑂𝑖 has been successfully processed, the processing thread immediately sends
a countdown signal to all other threads, which can now explore the dependent operations of 𝑂𝑖 .
Such an exploration strategy resolves the dependencies of operations immediately, leading to more
operations being available to schedule. However, as threads have to send countdown latch signals
via all directed edges to resolve dependencies, ns-explore hence incurs higher message-passing
overhead than s-explore.

4.2 Scheduling Unit Granularities
During exploration, each thread can pick up a single operation or a group of operations as the unit
of scheduling, resulting in different performance behaviours.

4.2.1 Fine-grained Scheduling Unit (f-schedule). A thread can schedule a single operation as the
scheduling unit, as shown in Figure 5(a). Such a fine-grained scheduling unit leads to good system
scalability. First, a small scheduling unit essentially translates to higher parallelism opportunities,
as more operations can be concurrently executed. Second, dependency resolution can be also
conducted in a fine-grained manner, as whenever an operation has been successfully processed, we
can immediately check if its dependent operations have become available for scheduling.

4.2.2 Coarse-grained Scheduling Unit (c-schedule). The drawback of f-schedule is that it incurs
significant context-switching overhead. Alternatively, we may schedule a group of operations
together. For example, <𝑂1,𝑂2,𝑂5> and <𝑂3,𝑂4> form two scheduling units in Figure 5(b).
Operations in the same group are sequentially processed following TDs or LDs, when they are
grouped by key or timestamp. When all operations in that group have been processed successfully,
their dependent operations become available for scheduling. Although it amortizes the context-
switching overhead, it slows down dependency resolution among operations within the same
group, making it less scalable and more sensitive to load imbalance among groups.

Proc. ACM Manag. Data., Vol. 1, No. 1, Article 59. Publication date: May 2023.



59:10 Yancan Mao et al.

Circular Dependency Issue. It is noteworthy that the example shown in Figure 5 contains a
circular dependency among the two coarse-grained scheduling units (i.e., 𝑂1→𝑂3 and 𝑂3→𝑂5). To
address such an issue, MorphStream merges circular dependencies into a single scheduling unit.
Subsequently, operations with no dependencies (i.e., 𝑂1) are first processed, and the remaining
ones are processed when their dependencies have been resolved. This iterative process continues
until all operations in the merged scheduling unit have been processed. Such a circular dependency
leads to reduced parallelism and will not appear under f-schedule. Hence whether there are cyclic
dependencies becomes a key workload characteristic to be considered when selecting different
scheduling unit granularities in MorphStream.

4.3 Abort Handling Mechanisms
During execution, each thread may abort transactions eagerly or lazily, trading off context switching
overhead and wasted computing efforts. Specifically, each thread may abort eagerly as soon as an
operation fails, thereby introducing minimal impact on the ongoing execution of other operations.
In contrast, we can also handle aborts lazily after the entire TPG has been fully explored to minimize
context switching overhead.

4.3.1 Eager Aborting (e-abort). The implementations of e-abort are different under varying
exploration strategies.
A) Structured Eager Aborting: When s-explore is adopted, e-abort eagerly handles abort in a

stratified way. After all operations of a stratum have been processed, threads start to handle aborts
when the processing of any operations fails. It works in two steps. First, threads abort the failed
operations and their logically dependent operations. Second, to update the affected operations that
would be executed after aborted operations, threads rollback and redo from the most outer stratum
containing aborted operations.

B) Non-structured Eager Aborting: When ns-explore is adopted, e-abort handles aborts based on
a coordinator-based mechanism to ensure that we only need to handle abort once even if multiple
operations of the transaction fail. Specifically, we mark the first operation of each state transaction
as the head. During scheduling, a thread that picks up a head operation will further function as a
coordinator thread for that transaction. Once a thread finds an operation processing failed, it notifies
the corresponding coordinator thread to start handling the abort of that transaction. When the
coordinator receives the failure notification, it enforces abort handling by 1) aborting all operations
of the transaction; 2) propagating notifications to other threads, in order to roll back and redo all
dependent operations.

4.3.2 Lazy Aborting (l-abort). In contrast to e-abort, threads can record failed operations during
their execution but do not immediately handle them. Only when the TPG has been fully explored,
i.e., all operations have been picked up and processed (committed or aborted), threads cooperatively
abort the failed operations, and those operations that are logically dependent on aborted operations.
All aborted operations are removed from the TPG, andMorphStream redoes the entire TPG from the
beginning. Such an approach is simple to implement and minimizes the context switching overhead,
and is adopted by TStream [41]. However, it may need to repeatedly check for transaction abort
and perform multiple iterations, until the TPG does not contain any operations to be aborted. This
can generally lead to significant wasted computing efforts compared to e-abort.

4.3.3 Rollback based on Multi-Versioning State Storage. To guarantee a correct schedule
(Definition 3), we must roll back the states that have been modified by the aborted operations.
This is needed under both e-abort and l-abort. We create an additional physical copy of each state
whenever it is modified. For each copy of the state, we further annotate a timestamp of the writing
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Table 3. Workload characteristics to TPG Properties

Type S-TPG Prop. Workload Char.

Vertex
Computation Complexity 𝐶

Vertex Degree Distribution ∝
∼
\

Ratio of Aborting Vertexes ∝
∼
𝛼

Edge

Number of LDs ∝
∼
𝑇 ∗ 𝑙

Number of TDs ∝
∼
𝑇 ∗ 𝑙

Number of PDs ∝
∼
𝑇 ∗ 𝑙 ∗ 𝑟

Cyclic Dependency Correlated to \ , 𝑇 , 𝑙 , 𝑟

operation to specify its version. When an operation is aborted, the associated state will be rolled
back to the version with the latest timestamp smaller than the aborted operation. The physical
copies can be removed after the current batch of transactions is fully processed (i.e., committed or
aborted). It is noteworthy that suchmulti-versioning state storage is also used to support windowing
queries in MorphStream (Section 5.4).

4.4 Heuristics Decision Model
The original task graph scheduling problem is NP-complete [24]. The additional stochasticity (e.g.,
arbitrary user-defined functions and transaction aborting) in our scheduling context further leads
to a large solution space. We hence propose a heuristic-based lightweight decision model to guide
MorphStream to make a proper scheduling decision at runtime. Our decision model is summarized
based on our extensive microbenchmark studies and theoretical analysis as summarized in Table 2.
Model Inputs. The decision model takes seven properties of a constructed TPG summarized

in Table 3 as inputs. Those properties depend on various workload characteristics. (1) Vertex
Computational Complexity is mapped to the complexity of the user-defined function in the
corresponding state access operation (𝐶); (2) Vertex Degree Distribution is proportional to the
state access distribution of the corresponding operation (\ ), where certain states may be more likely
to be accessed than others; (3) Ratio of Aborting Vertexes is proportional to the ratio of operations
that need to be aborted (𝑎), which needs to be profiled and estimated; (4,5,6) Number of LDs, TDs,
PDs is proportional to the number of transactions arriving during the batch interval (𝑇 ) and the
transaction length (𝑙). The number of PDs is also proportional to the number of state accesses
per operation (𝑟 ) since an operation may need to read multiple states to resolve PDs. (7) Cyclic
Dependency refers to whether there are cyclic dependencies formed when c-schedule is adopted,
and is correlated to \ ,𝑇 , 𝑙 , and 𝑟 . Note that, most properties can be obtained during the construction
of TPG, while a few properties, such as the average computational complexity per vertex, need to
be instantiated with profiling.
Decision Model. The overview of our decision model is shown in Figure 6. Note that the

qualitative remarks of a high, medium and low are relative and the quantitative value depends on
actual hardware and workloads. Based on the aforementioned properties of the TPG, our decision
model makes the scheduling decision along three dimensions in parallel at runtime.

I) Decision of Exploration Strategies: The model selects the s-explore strategy when two conditions
are met at the same time: a) the number of all three types of dependencies is high, and b) the
vertex degree distribution is uniform, and the workload is balanced among threads. In such a case,
s-explore reduces the context switching overhead during exploration based on the stratified auxiliary
structure of the TPG for cooperative exploration. The model selects the ns-explore strategy for the
remaining cases, as it can resolve dependencies more flexibly. In particular, ns-explore performs
especially better when the distribution of dependencies is skewed.
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Exploration Strat.
Num. of Vertex Degree

Distribution
High( )

ns-explore

Low( ) Skewed( )

s-explore

Uniform( )

Abort Handling
Computation
Complexity

Rat. of Aborting
Vertexes

Low( )

e-abort

High( ) Low( )

l-abort

High( )

Scheduling Gran.
Cyclic

Dependency Num. of 
False

Num. of 
High( )

c-schedule

Low( )

f-schedule

True High( )Low( )

Fig. 6. The lightweight decision model. The concrete threshold numbers in brackets are based on our
experiments.

II) Decision of Scheduling Unit Granularities: The model selects c-schedule when three conditions
are met at the same time: a) there is no cyclic dependency among groups of operations, as the
overhead for removing cycling dependencies is significant; b) the number of TDs is high, as it leads
to a lower context-switching overhead on resolving dependencies; and c) the number of PDs is low,
as it leads to fewer dependencies among groups of operations. The model selects f-schedule for the
remaining cases to leverage its better scalability.
III) Decision of Abort Handling Mechanisms: The model selects l-abort when two conditions are

met at the same time: a) the computation complexity of vertexes is low, as this leads to a low redo
overhead; and b) the ratio of aborting vertexes is high, as when many transactions need to be
aborted, they can be handled together, reducing overall context-switching overhead. The model
selects the e-abort mechanism for the remaining cases, as it has minimal impact on the ongoing
execution of other operations.

5 IMPLEMENTATION DETAILS
Compared to existing non-adaptive scheduling approaches, much of the additional system overhead
of MorphStream comes from constructing and exploring the TPG concurrently and correctly,
considering that input events may arrive out-of-order. In the following, we first discuss the system
architecture of MorphStream. Next, we discuss the details of the implementation of MorphStream
that significantly reduces TPG construction and exploration overhead. Finally, we also discuss some
limitations of MorphStream.

5.1 System Architecture
Figure 7 shows the modularized system architecture of MorphStream with four key components:
ProgressController (PC), StreamManager (SM), TxnManager (TM), and TxnScheduler (TS). The
PC is a singleton component that assigns monotonically increasing timestamps to its generated
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Fig. 7. The system architecture ofMorphStream. The constructed TPG and shared state are stored in memory.
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Fig. 8. A running example of a TPG construction process involving three state transactions, which may arrive
out-of-order.

punctuations. A simple global counter is used by PC to track punctuations. The other three
components are instantiated in each thread locally. The SM conducts preprocessing and
postprocessing for every input event (𝑒). Similar to some prior works [41], state transactions
may be issued but not immediately processed during preprocessing. Only when state transactions
are processed (i.e., committed or aborted) the associated input events can be postprocessed by
the SM based on transaction processing results. The TM handles dependency resolution among
state transactions and inserts decomposed operations to construct a TPG. The TM is also involved
upon receiving punctuation to refine the constructed TPG with further dependency resolution.
We discuss the detailed two-phase TPG construction process shortly later in Section 5.2. The TS
schedules operations for concurrent execution based on the constructed TPG according to the three
dimensions of scheduling decisions as discussed previously in Section 4.

5.2 Parallel TPG Construction
MorphStream needs to construct a TPG for every batch of state transactions with low overhead.
The main challenge is to efficiently identify the three types of dependencies (TDs, LDs, PDs), i.e.,
the edges. Upon arrival, transactions are decomposed into atomic state access operations, which
are the vertexes of the TPG, accordingly. During this decomposition, LDs can be identified among
operations from the same transaction. However, TDs and PDs can not be identified immediately
because the arrival of transactions may be out-of-order. To address this issue, we partition the TPG
construction process into two steps during the stream processing phase and transaction processing
phase, correspondingly. We illustrate in Figure 8 how MorphStream constructs a TPG in parallel
with the same running example as before.

TPG construction during stream processing phase: Upon arriving, 𝑡𝑥𝑛1 ∼ 𝑡𝑥𝑛3 are
immediately decomposed into atomic state access operations 𝑂1 ∼ 𝑂5. LDs are identified among
operations from the same transaction according to their statement orders. A TPG 𝐺 is constructed
by inserting operations as vertexes and LDs as edges, correspondingly. To help identify TDs
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among operations, which may arrive out-of-order, all operations are inserted into key-partitioned
𝑠𝑜𝑟𝑡𝑒𝑑𝐿𝑖𝑠𝑡𝑠 (i.e., a concurrent skip list [15]), where the key is the targeting state of each operation,
i.e., state 𝐴 or 𝐵 in this example, and sorted by timestamp. To help identify PDs during the next
phase, for each write operation 𝑂𝑖 =𝑊𝑟𝑖𝑡𝑒 (𝑘, 𝑓 (𝑘1, 𝑘2, ...𝑘𝑛)), we additionally maintain 𝑛 “proxy
operations” of 𝑂𝑖 . Each “proxy operation” is a read operation, denoted as 𝑃𝑂𝑘 𝑗

𝑖
, 𝑘 𝑗 ∈ 𝑘1, 𝑘2, ...𝑘𝑛 ,

inserted into 𝑠𝑜𝑟𝑡𝑒𝑑𝐿𝑖𝑠𝑡𝑠 of 𝑘1, 𝑘2, ...𝑘𝑛 , correspondingly. For example, for 𝑂3 and 𝑂5 whose write
function depend on states 𝐴 or 𝐵, we further insert a “proxy operation” (denoted as 𝑃𝑂𝐴

3 and 𝑃𝑂𝐵
5 )

into the 𝑠𝑜𝑟𝑡𝑒𝑑𝐿𝑖𝑠𝑡 of 𝐴 and 𝐵, correspondingly.
TPG construction during transaction processing phase: During the transaction processing

phase, all further state transactions are blocked until MorphStream returns back to the stream
processing phase. We can now identify TDs and PDs efficiently with the help of the constructed
𝑠𝑜𝑟𝑡𝑒𝑑𝐿𝑖𝑠𝑡 and “proxy operations” during the stream processing phase. First, TDs can be identified in
a straightforward way by iterating through operations inserted into each 𝑠𝑜𝑟𝑡𝑒𝑑𝐿𝑖𝑠𝑡 , i.e.,𝑂1,𝑂2,𝑂5
and 𝑂3,𝑂4. Note that “proxy operations” are not involved in identifying TDs. Second, PDs can be
identified according to the inserted “proxy operations”. In particular,𝑂𝑖 is parametric dependent on
the precedent write operation of “proxy operation” in the 𝑠𝑜𝑟𝑡𝑒𝑑𝐿𝑖𝑠𝑡 . In this example, PDs can be
identified among 𝑂1 and 𝑃𝑂𝐴

3 and among 𝑂3 and 𝑃𝑂𝐵
5 . After identifying all TDs and PDs, we insert

them as edges to 𝐺 , which captures the complex workload dependencies of the current batch of
state transactions.

5.3 Stateful TPG Management
MorphStream has to explore a TPG efficiently while ensuring transactional semantics. The main
challenge is to manage the life cycles of concurrent operations and commit/abort transactions
correctly. To this end, MorphStream annotates a finite state machine in each vertex of the TPG.
Each vertex of the TPG can be in one of the four states, summarized in Table 4. (1) Blocked (𝐵𝐿𝐾):
denotes that a vertex is not ready for scheduling due to unsolved dependencies. (2) Ready (𝑅𝐷𝑌 ):
denotes that a vertex is ready for scheduling, as all of its dependencies are resolved. (3) Executed
(𝐸𝑋𝐸): denotes that a vertex has been processed successfully. (4) Aborted (𝐴𝐵𝑇 ): denotes that a
vertex has been aborted either due to failed processing of itself or its dependent vertexes.

MorphStream continuously tracks state transitions in every vertex of TPG to guarantee a correct
schedule while making dynamic scheduling decisions. Figure 9 summarizes two scenarios of state
transition, including six cases (i.e., T1∼T6). T1: When all dependencies of an operation in 𝐵𝐿𝐾
state are resolved, i.e., all of its dependent operations are in 𝐸𝑋𝐸 state, it transits to the 𝑅𝐷𝑌
state and becomes available to schedule. T2: After the processing of an operation in 𝑅𝐷𝑌 state
succeeds, it transits to 𝐸𝑋𝐸. T3: Operations in 𝐵𝐿𝐾 state may be speculatively scheduled with
unsolved dependencies for higher execution concurrency, so it can directly transit to 𝐸𝑋𝐸. T4:
The state will be transited to 𝐴𝐵𝑇 from any state when the processing of an operation is failed
or its logical dependent operations transit to 𝐴𝐵𝑇 . T5: Instead of simply rolling back all affected
operations to 𝐵𝐿𝐾 state, we can avoid costly re-exploring of the TPG. Specifically, we can proactively
check whether the operation is ready to execute immediately after rollback, i.e., when dependent
operations transit to𝐴𝐵𝑇 , the current operation under 𝐸𝑋𝐸 or 𝐵𝐿𝐾 will transit to 𝑅𝐷𝑌 and execute
immediately. T6:When dependent operations roll back to 𝑅𝐷𝑌 / 𝐵𝐿𝐾 , the current operation has
to roll back to 𝐵𝐿𝐾 because of unsolved dependencies. The abort handling is completed when all
operations are processed, after 𝐴𝐵𝑇 operations transit to either 𝑅𝐷𝑌 or 𝐵𝐿𝐾 .
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Table 4. State Definition in the TPG

State Definition

Blocked (𝐵𝐿𝐾 ) Operation is not ready to schedule
Ready (𝑅𝐷𝑌 ) Operation is ready to schedule
Executed (𝐸𝑋𝐸) Operation is successfully processed
Aborted (𝐴𝐵𝑇 ) Operation is aborted

T1

T3BLK

T2

RDY

EXE

(a) Transition during
execution.

T5

T4
T6

EXE

T4

T5

BLK

T6
T4

RDY

ABT

(b) Transition during
abortions.

Fig. 9. Six cases of state transition flow of an operation.

5.4 Limitations
In this paper, we assume there is no system failure at runtime. Guaranteeing fault tolerance without
sacrificing low latency and high throughput during normal operation is still an open challenge
for TSPEs [4, 22, 41]. This is a challenging problem even in a single node setting because of the
non-trivial combination of both transaction and stream-oriented properties in TSPEs. Another
major limitation ofMorphStream is the support for streamwindow queries. Instead of only accessing
the recent states (Def 1), an operation may need to further access a time range of states. Due to its
significant complexity, we leave it as future work.

6 EVALUATION
In this section, we conduct a detailed experimental evaluation comparing MorphStream to the
alternative approaches. We have made the following key observations.

• Our experimental results show that MorphStream outperforms conventional SPEs for TSP
applications (Section 6.2.1) by orders of magnitude. Because of the adaptive scheduling
strategy, MorphStream achieves up to 2.2x higher throughput and 69.1% lower latency
compared to the state-of-the-art TSPEs (Section 6.2.2 and 6.2.3).

• In Section 6.3, we show that MorphStream spends more time on TPG construction and
exploration, but largely reduces the overhead of synchronization. A drawback ofMorphStream,
however, is its high memory consumption (about 1.4x times higher) due to the more complex
auxiliary data structures.

• We show that no one scheduling strategy can outperform others in all cases (Section 6.4).
Each scheduling decision has its own advantages and disadvantages under varying workload
characteristics.

• In Section 6.5, we show that MorphStream spends up to 2.3x fewer clock ticks and has a
lower memory bound than TStream and S-Store. Furthermore, MorphStream has much better
multicore scalability compared to prior schemes.
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Table 5. Workload default configuration

Workload

Char.

SL GS TP Tweaking

ranges

\ 0.20 0.20 0.20 0.0∼1.0
𝑎 1% 1% 1% 0∼90%
𝑙 2 / 4 1 2 1∼10
𝐶 10 us 10 us 10 us 0∼100 us
𝑟 1 / 2 2 1 1∼10
𝑇 10240 10240 40960 5120∼81920

6.1 Evaluation Methodology
We conduct all experiments on a dual-socket Intel Xeon Gold 6248R server with 384 GB DRAM.
Each socket contains 24 cores of 3.00GHz and 35.75MB of L3 cache. To isolate the impact of NUMA,
we use one socket of the server in our experiments. We leave it as a future work to address the
NUMA effect [27]. We pin each thread on one core and assign 1 to 24 cores to evaluate the system
scalability. The OS kernel is Linux 4.15.0-118-generic. We use JDK 1.8.0_301, set -Xmx and -Xms
to be 300 GB. We use G1GC as the garbage collector across all the experiments and configure
MorphStream to not clear temporal objects such as the processed TPGs and multi-versions of states.
We show the impact of clean-up and JVM GC in Section 6.3.2.

We use three use cases: Streaming Ledger (SL), Grep&Sum (GS), Toll Processing (TP) from a
benchmark proposed by our previous work [41] on evaluating the effectiveness of MorphStream.
For all these workloads, we follow the original application logic but tweak the configurations to
bring more workload dependencies such that we can better expose the issues of existing TSPEs. In
particular, we have configured ten times larger sizes of shared mutable states and generated more
state transactions accessing overlapped states in our workload settings.

Tuning Workload Characteristics. To better comprehend the system behaviour, we tune the
following six workload characteristics. The default workload characteristics and varying ranges are
summarized in Table 5. 1). State Access Distribution (\ ): Similar to [41], we modelled the state access
distribution as Zipfian skew, and tune the Zipfian factor to vary \ . 2). Ratio of Aborting Transactions
(𝑎): We tune 𝑎 by artificially adding transactions that violate the consistency property, such as
the account balance can not become negative. 3). Transaction Length (𝑙): We tune 𝑙 by varying
the number of atomic state access operations in one transaction. 4). The complexity of a UDF (𝐶):
We tune 𝐶 by adding a random delay in each user-defined function (i.e., the 𝑓 in Definition 5). 5).
Number of State Access Per Operation (𝑟 ): We vary the ratio of multiple state access operations to
tune 𝑟 . 6). Number of Transactions (𝑇 ): We tune 𝑇 by varying the punctuation interval.

Dynamic Workload Configurations. To evaluate the adaptability of MorphStream, we follow
themechanism proposed byDing et al. [13] to generate dynamicworkloads. Specifically, we generate
various phases of dynamic workloads by different trends, which determines the parameters we want
to tune and how they change over time. For example, in a dynamic workload with an increasing
tendency to abort transactions, we will increase the ratio of aborting transactions over time.

6.2 Performance Evaluation
In this section, we conduct a series of experiments to confirm MorphStream’s superiority compared
to the state-of-the-art.

6.2.1 Comparing to Conventional SPEs. In the first experiment, we show that TSPEs significantly
outperform conventional SPEs when handling TSP applications. We use the default workload
configuration shown in Table 5 in this study. We have implemented SL on Flink-1.10.0. Since
the native Flink does not support shared mutable state accesses, we leveraged Redis-6.2.6 with a

Proc. ACM Manag. Data., Vol. 1, No. 1, Article 59. Publication date: May 2023.



MorphStream: Adaptive Scheduling for Scalable Transactional Stream Processing on Multicores 59:17

MorphStream TStream S-Store Flink+Redis Flink+Redis
0

50

100

150

200 176.67

110.88

47.19

14.10
1.48Th

ro
ug

hp
ut

(k
/s

ec
)

(w/o Locks) (w/ Locks)

Fig. 10. Performance comparison among MorphStream and existing systems for running SL on 24 cores.

distributed lock, a common workaround, to store shared mutable states. We deploy a standalone
cluster with a single TaskManager configured with 24 slots and set the parallelism of SL to 24. To
avoid the OOM exception, we set the TaskManager heap size to 100GB. When locking is disabled
(denoted as w/o Locks), execution correctness is not guaranteed in Flink. The detailed workload
configuration is shown in Table 5. As shown in Figure 10, MorphStream significantly outperforms
the two state-of-the-art TSPEs, TStream (1.6x) and S-Store (3.7x), and Flink (up to 117x). It is
noteworthy that Flink, a popular conventional SPE, achieves orders of magnitude lower throughput
in this application. By disabling locks, its throughput increases but is still far lower than any of the
TSPEs. In the following, we hence do not further compare MorphStream with Flink.

6.2.2 Evaluation on Dynamic Workloads. In this experiment, we show that MorphStream can
always select a better-performing scheduling strategy under changing workloads, resulting in
lower latency and higher throughput compared to state-of-the-art TSPEs. We use SL [2] as the
base application and divide the workloads into four phases. Figure 11a and Figure 11b compare
the throughput and latency of MorphStream against two state-of-the-art TSPEs: S-Store [22] and
TStream [41]. We mark each phase in the dynamic workload using the dotted grey box. In the first
phase, a large number of events consisting of Deposit transactions arrive, and the state accesses
distribution is scattered. As a result, there are lots of LD and TD but few PD. At the same time,
the vertex degree distribution is uniform as the state accesses are scattered. As guided by our
decision model (Figure 6), MorphStream selects the s-explore strategy to resolve a large number of
dependencies and selects c-schedule for scheduling since there are fewer PD.MorphStream achieves
up to 1.27 times higher throughput compared to the second-best. In the second phase, we configure
the workload with increasing key skewness over time. Hence, dependencies are gradually contented
among a small set of states, which facilitates the resolution of dependencies. As expected, the
performance of all approaches drops. MorphStream gradually morphs from s-explore to ns-explore
strategy to resolve dependencies in a more flexible manner, and constantly outperforms S-Store. In
the third phase, we configure the workload with an increasing ratio of Transfer transactions so
that one of the two types of transactions in SL is called intensively in a short period of time. As
the proportion of Transfer transactions increases, there are more and more dependencies between
scheduling units. Hence, MorphStream gradually morphs from c-schedule to f-schedule to reduce
the dependency resolution overhead and result in a stable throughput.

There is no transaction abort in the first three phases, and the selection of aborting mechanism
in MorphStream does not matter. In the fourth phase, we increase the ratio of aborting transactions
over time to evaluate the performance of the system under a dynamically changing ratio of aborting
transactions. In the beginning, MorphStream applies the e-abort mechanism to eagerly abort when
the operation fails and morphs to l-abort when aborts are frequent so that transaction aborts
can be handled together to reduce context switching overhead. The results show that TStream’s
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Fig. 11. Evaluation on Dynamic Workload.
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Fig. 12. Single (plain, TStream, S-Store) vs. Multiple (nested) Scheduling Strategies.

performance drops when transaction aborts appear. This is because of the rapidly increasing
overhead of redoing the entire batch of transactions. In contrast, MorphStream achieves relatively
stable performance and is 2.2x to 3.4x higher than other schemes.
A further key takeaway from Figure 11b is that TStream and S-Store have significantly higher

tail latency than MorphStream. This is mainly because the scheduling strategies in TStream
and S-Store are limited for specific workload characteristics. When workload changes, such as
increasing transaction aborts or key skewness, their efficiency drops significantly, resulting in
higher processing latency. In contrast, MorphStream dynamically morphs the scheduling strategy
according to the change of workload characteristics to deal with different situations, thus achieving
a constantly lower processing latency.

6.2.3 Evaluation of Multiple Scheduling Strategies. In Toll Processing (TP), the road conditions in
different regions can have varying characteristics, which can be divided into multiple groups.
TStream [41] and S-Store [22]’s scheduling strategies may work well on one group of state
transactions but not on another. In contrast, MorphStream’s modular and flexible design allows
it to employ multiple scheduling strategies concurrently. For illustration, we configure the TP to
contain two groups of state transactions simultaneously. In group 1, the state access distribution of
state transactions is skewed, and the ratio of aborting transactions is high. In group 2, the state
distribution of state transactions is uniform and transaction aborts occur rarely. As guided by our
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decision model (Figure 6), MorphStream applies ns-explore, c-schedule, and l-abort for handling
transactions of group 1, and applies s-explore, c-schedule, and e-abort for handling transactions of
group 2. We name such a combination of strategies a nested configuration.
Figure 12a shows the throughput comparison results. We can see that the throughput of the

nested configuration is 40.9% higher than TStream and 117% higher than S-Store. To further
comprehend the advantage of the nested configuration, we compare it against two plain scheduling
strategy: ns-explore, c-schedule, and l-abort (denoted as plain-1) and s-explore, c-schedule, and
e-abort (denoted as plain-2) for handling all transactions from both groups. Unsurprisingly, the
throughput of the nested configuration is 1.17× and 2.87× higher than that of each plain scheduling
strategy. When the ratio of aborting transactions in group 1 is high, the plain-2 is bottlenecked
by the frequent context switching overheads. At the same time, as the skewness of state access
increases in group 1, the workloads become less balanced among threads, hampering the system
performance when using s-explore in plain-2. As the state distribution of state transactions is
uniform and the ratio of aborting transactions is low in group 2, the plain-1 spends more time
resolving dependencies and redoing the entire batch of transactions. The plain-1 performs better
than plain-2 as there are fewer PD and the computation complexity is low, but it is still lower than
that of the nested setting.
Figure 12b shows the comparison results of end-to-end processing latency. Thanks to the

significantly improved performance, MorphStream with nested configuration achieves very low
processing latency. Note that, S-Store spends more time on synchronization and inserting locks
under a highly contended workload in group1 because dependent transactions are executed serially,
resulting in linearly increasing latency. Under a higher ratio of aborting transactions in group
1, plain-2 spends lots of time achieving fine-grained state rollback because of the high context-
switching and synchronization overhead of s-explore (Table 2), which is why plain-2 has the highest
latency compared to other schemes.

6.3 Overhead
MorphStream achieves adaptive scheduling at the cost of more complex runtime operations such as
data structures constructing and exploring available state access operations. These extra operations
can negatively impact the system in the following two ways: 1) the complex construction and
exploration process may increase the latency of transaction processing, and 2) the auxiliary data
structure will increase the memory consumption of the application.

6.3.1 Latency overhead. Following a prior work [41], we show the time breakdown in the following
aspects. 1) Useful Time refers to the time spent on doing actual work including accessing shared
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mutable states and performing user-defined functions. 2) Sync Time refers to the time spent on
synchronization, including blocking time before lock insertion is permitted or blocking time due to
synchronization barriers during mode switching. 3) Lock Time refers to the time spent on inserting
locks after it is permitted. 4) Construct Time refers to the time spent on constructing the auxiliary
data structures, e.g., TPG in MorphStream and operation chains in TStream. 5) Explore Time refers
to the time spent on exploring available operations to process. 6) Abort Time refers to the wasted
computation time due to abort and redos.

Figure 13a shows the time breakdown when the system runs the dynamic workload in Section 6.2.
There are three key takeaways. First, although TStream andMorphStream spend a significant portion
of time during construction (Construct Time), they successfully reduce synchronization (Sync Time)
and lock (Lock Time) overhead compared to S-Store. This explains their better performance on
multicore processors. Second, TStream has the highest abort time (Abort Time) because TStream has
to redo the entire batch of transactions when a transaction abort happens. In contrast, S-Store spends
little time in abort as it involves little redo of state transactions because dependent transactions
are executed serially. Third, we can see that MorphStream still spends a significant fraction of
time performing exploration (Explore Time). This is mainly caused by excessive message-passing
among threads. In the future, we plan to investigate more efficient exploration strategies such as
prioritizing mechanisms [20] in MorphStream.

6.3.2 Memory footprint. In this study, we use the dynamic workload in Section 6.2 to evaluate
memory footprint. Figure 13b demonstrates the memory consumption of three TSPEs without GC
involved. In the initialization stage, the memory consumption of all systems is almost the same.
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MorphStream spends more time during initialization compared to TStream as it needs to initialize
more data structures to support adaptive scheduling. During runtime, MorphStream and TStream
consume a similar amount of memory per batch of state transactions, and both consume much more
than S-Store. This is because they construct auxiliary data structures for scheduling, and especially
they may maintain multiple physical copies of each state at different timestamps during execution
(Section 4.3). Note that, as we have configured MorphStream to not clear temporal objects and the
JVM size to be large enough (300GB), the total memory usage keeps increasing until execution is
finished, during which no GC is triggered. We plan to incorporate stream compression [40, 42] in
MorphStream to reduce such high memory footprints in future.

6.3.3 Clean-up and GC overhead. Figure 14 shows the impact of clean-up under varying JVM sizes
from 100GB to 300GB.We can see that enabling clear temporal objects brings down the performance
ofMorphStream up to 12.8%, and still outperforms TStream and S-Store. In Figure 14(b), the memory
usage fluctuates up and down when the JVM size is set to 100GB or 200 GB because the JVM
periodically reclaims (GC) the temporary objects in the continued processing of data streams.

6.4 Impact of Scheduling Decisions
In this section, we evaluate the impact of varying scheduling decisions under different workload
characteristics using Grep&Sum (GS) due to its flexibility.

6.4.1 Impact of Exploration Strategies. We first study the effectiveness of different exploration
strategies (i.e., ns-explore vs. s-explore) mainly affected by the punctuation interval and theworkload
skewness, as discussed in Section 4.4. Figure 15a shows the effects of selecting different exploration
strategies under varying punctuation interval and low workload skewness. ns-explore works better
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when punctuation interval is low, while s-explore works better when punctuation interval is high.
This is due to the linear proportionality between the punctuation interval and the number of
dependencies (TD/PD) of the constructed TPG. When the punctuation interval is low, ns-explore
resolves the rare dependencies as soon as an operation has been successfully processed, leading
to higher system concurrency. s-explore works better otherwise as the notification overhead of
the ns-explore approach keeps increasing with more dependencies in the workloads. However,
s-explore has a constant construction and synchronization overhead for dependencies resolution.
Figure 15b shows the effects of selecting different exploration strategies under varying workload
skewness and high punctuation interval. We can see that s-explore works better when the state
accesses are uniformly distributed, i.e., the Zipf skew factor is 0. ns-explore works better when
the state accesses are skewed. This is because a skewed workload leads to load unbalance among
threads and intensifies the synchronization overhead when s-explore is applied as summarized in
Table 2.

6.4.2 Impact of Scheduling Granularities. In this section, we study the effectiveness of different
scheduling granularities (i.e., f-schedule v.s. c-schedule), which are affected by the following key
workload characteristics, namely cyclic/acyclic, number of state access, punctuation interval, and the
ratio of multi-accesses. First, Figure 16a shows the results of different scheduling granularities under
the workload with or without cyclic dependencies. c-schedule performs better when there is no
cyclic dependency among the batched scheduling units since each thread can schedule a group of
operations together as scheduling unit to amortize the context switching overheads. However, our
further experiments reveal that when there is a large number of state access, f-schedule is always
better than c-schedule, regardless of whether there are circular dependencies. This is mainly due
to the fact that even without circular dependencies, a large number of state accesses will increase
the number of PD, causing a significant overhead on resolving the dependencies among operations
of the same group. Second, Figure 16b shows how varying punctuation interval affect the selection
of scheduling unit granularities when there are no cyclic dependencies. We set the number of state
accesses to one to avoid the effect of PD, so the punctuation interval only controls the number of TD
in the TPG. We can see that c-schedule achieves higher throughput at higher punctuation intervals.
When the punctuation interval is high, the large number of TD increases the context-switching
overhead in f-schedule, which is why the performance of f-schedule decreases when punctuation
interval is large, such as 81920. In contrast, c-schedule schedules the operations in group resulting
in lower context-switching overhead on resolving TD compared to the f-schedule. Third, Figure 16c
shows that f-scheduleworks better when the ratio of multiple state access is high, while c-schedule
works better when the ratio is low. The ratio of multiple state access controls the number of PD
among operations, as we can see that the PD affects the performance of c-schedule significantly.
This is mainly because the execution concurrency drops when the number of PD is high.

6.4.3 Impact of Abort Handling Mechanisms. Finally, we study the impact of two abort handling
mechanisms (i.e., e-abort v.s. l-abort) mainly affected by the abort ratio and the computation
complexity workload characteristics. Figure 17a shows the comparison results of varying
computation complexity when the abort ratio is high. A lower computation complexity leads to a
low redo overhead, and l-abort handles frequent aborts together to reduce the context switching
overheads. e-abort is better otherwise, as it makes a minimum impact on the ongoing execution
of other operations. Figure 17b shows the results of different abort handling mechanisms under
different abort ratios when the computation complexity is low. The results indicate that as the
ratio of aborting transactions increases, l-abort works better. The key reason is that when the
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Fig. 18. Impact of Modern Hardware.

computation complexity is low, the context-switching overheads and the synchronization overhead
among threads to achieve fine-grained state rollback and redo become the major bottlenecks.

6.5 Impact of Modern Hardware
In this section, we compare MorphStream with existing TSPEs on how they interact with modern
multicore processors from the modern hardware architecture perspective.
Micro-architectural Analysis. We take SL as an example to show the breakdown of the

execution time according to the Intel Manual. Figure 18a compares the time breakdown of different
TSPEs. We measure the hardware performance counters through Intel Vtune Profiler during the
algorithm execution and compute the top-down metrics. We have three major observations. First,
the breakdown results reaffirm our previous analysis that MorphStream spends up to 2.3x fewer
clock ticks for transaction processing compared to TStream and S-Store, because of its more efficient
adaptive scheduling strategies. Second, all three TSPEs are Memory Bounded, i.e., a large proportion
of CPU cycles are spent due to memory access instructions: MorphStream (58.5%), TStream (63.3%),
and S-Store (80.9%). The detailed profiling with Intel Vtune Profiler reveals that it is commonly
due to the heavy usage of latches to resolve dependencies among transactions while accessing the
shared-mutable state. Both TStream and S-Store have a higher Memory Bound than MorphStream
due to the higher synchronization cost. Nevertheless, Figure 18a and Figure 13a jointly indicate that
MorphStream can adopt more efficient exploration strategies to further improve its performance.
Multicore Scalability. Figure 18b shows the scalability comparison among TSPEs, with two

major observations. First, MorphStream outperforms prior schemes with an increasing number
of cores confirming the good scalability of MorphStream. However, there is still a large room for
further improvingMorphStream towards linearly scale-up, the reason being that it becomes memory
bounded as Figure 18a previously shown. Second, when the number of cores is low, MorphStream
performs even worse than S-Store due to the large constant overhead of TPG construction process.
In a resource constraint setting, existing non-adaptive solutions may be more favoured.

7 RELATEDWORK
Unlike key-value stores, database systems, or conventional SPEs, TSPEs such as Streaming-
Ledger [1], S-Store [22], FlowDB [3], TStream [41], and MorphStream are based on a unique
computational model, where each input tuple from data streams may involve multiple keys. Thus
the processing of tuples can lead to potentially conflicting shared mutable state accesses. Such
a unique system feature has been originally motivated by a list of stream applications [8, 34]
and is applied or encouraged to be applied in emerging use case scenarios [1, 21, 25]. Some of
the novel design challenges and optimization opportunities of TSPEs have been discussed in
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previous works [22, 41]. The experimental results showed previously in Figure 10 also confirm that
conventional SPEs can not efficiently handle the targeted applications of TSPEs.
Executing each state transaction one by one following the event sequence naturally leads to

the correct schedule but seriously limits system concurrency [34]. Recent works have proposed
adopting partitioning and decomposition to optimize the performance of transaction processing,
such as [7, 26, 36, 38]. Similar ideas have also been adopted in TSPEs. For example, S-Store [22] adopts
state partitioning with extensions of guaranteeing state access ordering [11], while TStream [41]
adopts transaction decomposition to improve multicore scalability further. However, each existing
system is designed with a non-adaptive scheduling strategy and favours a subset of workload
characteristics. MorphStream deviates from existing solutions. It explores fine-grained workload
characteristics of every batch of state transactions. It then makes the correct scheduling based on a
decision model to morph the current scheduling strategy into a better-performing strategy.
Despite the large body of research on the scheduling problem in a general context [17, 27, 37],

task scheduling for TSPEs presents subtle but unique requirements [14, 18, 19, 24], largely due
to the integrated stream processing and transactional contexts [41]. For instance, the scheduling
unit can be reconfigured by the system, e.g., by splitting state transactions into operations and
regrouping by keys. It is thus difficult (if not impossible) to quantitatively model the objective
function of scheduling plans in TSPEs. We hence propose to model the scheduling of TSPEs into a
three-dimensional scheduling decision problem and guide it with a heuristic-based decision model.
Furthermore, the scheduling overhead is now on the critical path, prohibiting any sophisticated
optimization algorithms.

8 CONCLUSION
Transactional stream processing engines (TSPEs) have been increasingly gaining traction. In this
work, we show that the scheduling strategies of TSPEs can be decomposed into three dimensions
of scheduling decisions, exhibiting trade-offs among execution concurrency, context switching
overhead, and wasted computational efforts due to aborts. To this end, we propose a novel TSPE
MorphStream that is able to morph flexibly among scheduling strategies adapting to dynamically
changing workload characteristics. Guided by a lightweight decision model, MorphStream can
make the correct scheduling decision at runtime with minor overheads, which yields a multi-times
performance improvement over the state-of-the-art.
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