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Abstract—Transactional stream processing engines (TSPEs)
have gained increasing attention due to their capability of
processing real-time stream applications with transactional
semantics. However, TSPEs remain susceptible to system failures
and power outages. Existing TSPEs mainly focus on performance
improvement, but still face a significant challenge to guarantee
fault tolerance while offering high-performance services. We
revisit commonly-used fault tolerance approaches in stream
processing and database systems, and find that these approaches
do not work well on TSPEs due to complex data dependencies.
In this paper, we propose a novel TSPE called MorphStreamR to
achieve fast failure recovery while guaranteeing low performance
overhead at runtime. The key idea of MorphStreamR is to record
intermediate results of resolved dependencies at runtime, and
thus eliminate data dependencies to improve task parallelism
during failure recovery. MorphStreamR further mitigates the
runtime overhead by selectively tracking data dependencies and
incorporating workload-aware log commitment. Experimental
results show that MorphStreamR can significantly reduce
the recovery time by up to 3.1× while experiencing much
less performance slowdown at runtime, compared with other
applicable fault tolerance approaches.

Index Terms—Stream processing, Transaction, Parallel
recovery, Multicore

I. INTRODUCTION

Stream processing has been a significant research
domain [1]–[4] for decades, underpinning a variety of
applications such as fraud detection, dynamic car pricing,
online bidding, stock trading, and real-time harvesting
analysis. The evolution of stream applications [4]–[9] has
increasingly necessitated supports for shared mutable states,
entailing concurrent state accesses across different operators.
This necessity has not been supported correctly [10] and
efficiently [11]–[13] by today’s stream processing engines
(SPEs) like Storm [14], Flink [15], and Spark-Streaming [16].

Recently, transactional stream processing (TSP) [9], [10],
[12], [13], [17] have been proposed to incorporate transactional
semantics into stream processing. In the context of TSP, a
set of state accesses involved in processing a single input
event are modeled as a state transaction. As illustrated in
Figure 1, a typical TSP application–Streaming Ledger [6], [9],
[12] processes streaming requests of depositing/transferring
money among users. Each request triggers a state transaction
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Fig. 1: Streaming Ledger: a typical application of TSP

involving concurrent accesses to two (account, asset) tables.
Thus, it is essential to correctly schedule multiple concurrent
state transactions to guarantee the order of streaming events
and ACID properties (formally discussed in Section II).

Despite notable progress in the performance improvement
of TSPEs [12], [13], there remains a challenge to guarantee
fault tolerance [9] upon system failures and power outages. In
some mission-critical cases such as financial services [6], [18]
or healthcare [7], [19], state inconsistency or service disruption
are catastrophic errors. They may put service providers at risk
of financial losses, and even plunge them into potential legal
disputes. Thus, it is crucial for TSPEs to support fast failure
recovery without compromising the application performance.

Generally, there are two approaches to failure recovery
for TSPEs: global checkpointing (CKPT) [20], [21] and
logging [22]–[24]. With global checkpointing, the TSPE takes
periodical application checkpoints (only including input events
and application states), and reprocesses input events from the
latest checkpoint in case of failures. With logging such as
write-ahead logging (WAL), the TSPE persists log records
(i.e., command logs) before state transactions are committed,
and redoes command logs to recover the lost state. There
have been a number of studies on parallel recovery for the
logging mechanisms, such as DistDGCC (DL) [23] and Taurus
(LV) [24]. These proposals track and record data dependencies
at runtime, and enable parallel recovery for transactions that
do not have data dependencies.

To explore whether the above fault tolerance mechanisms
are effective and efficient for TSPEs, we apply them to
a state-of-the-art TSPE—MorphStream [12], and measure
its runtime performance and recovery time upon a system
failure. Figure 2 shows the experimental results of a typical
TSP application—Streaming Ledger [6]. The recovery time
represents the duration in which an application recovers from
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Fig. 2: Comparisons of applicable fault tolerance approaches

the latest checkpoint to the failure point. We can find that none
of the applicable solutions can support fast failure recovery
while guaranteeing high performance at runtime.

Since CKPT needs to reprocess all inputs after the
latest checkpoint, it usually results in a long recovery
time (10 seconds) on average. WAL significantly increases
the recovery time to 37 seconds because it simply redoes
command logs sequentially. Both DL and LV track/record data
dependencies among transactions (i.e., dependency graph and
vectors of logical sequence numbers, respectively), resulting in
notable performance degradation at runtime. During recovery,
both DL and LV redo transactions according to recorded
data dependencies, and thus only transactions without data
dependencies can be recovered in parallel. However, analyzing
dependencies from log records, such as dependency graph
reconstruction, is even more costly than reprocessing input
events by MorphStream. Additionally, the task parallelism
during recovery is still constrained to the inherent data
dependencies among transactions, especially for workloads
with high contention of state accesses. Thus, DL and LV
cannot reduce the recovery time effectively, and cause even
more overhead than CKPT.

In this paper, we present MorphStreamR, a high-
performance TSPE that enables fast parallel recovery
while guaranteeing low performance overhead at runtime.
MorphStreamR is designed by fully considering the
transactional and streaming features of TSP applications.
First, the transactional feature usually incurs intertwined
data dependencies among state transactions and thus limits
the recovery parallelism. Unlike DL [23] and LV [24] that
record inter-transaction dependencies through special data
structures, the key idea of MorphStreamR is to record
intermediate results of resolved dependencies at runtime,
and directly use these results to eliminate dependencies
during recovery. In this way, MorphStreamR can significantly
improve the task parallelism during recovery, without suffering
from the costly dependency resolution. This strategy offers
several benefits: (i) If a state transaction is aborted due
to violating the consistency property, MorphStreamR can
directly abort it by checking the resolved dependencies
during recovery, avoiding unnecessary computations. (ii)
MorphStreamR can resolve dependencies among multiple
threads to avoid lock contention during failure recovery, and
thus state access operations can be linearized in independent
chains and executed in parallel. (iii) MorphStreamR enables

optimized task scheduling based on accurate cost estimation
for each state access operation and thus improves data locality
and load balancing during parallel recovery.

Second, due to the streaming feature of TSP applications, it
is costly to track and persist all intermediate results of resolved
dependencies at runtime. To reduce this overhead, we propose
two logging mechanisms. First, we propose selective logging
to diminish the logging overhead while still guaranteeing
recovery efficiency. MorphStreamR only tracks dependencies
across partition boundaries because the communication cost
among threads is dominant. Second, we advocate workload-
aware log commitment epochs to make a trade-off between
the logging overhead and the recovery performance. For
instance, for workloads with less state access contention,
MorphStreamR adopts a longer log commitment epoch to
exploit the inherent high parallelism for recovery.

To evaluate MorphStreamR, we implement several
typical fault tolerance mechanisms commonly-used in
contemporary stream processing and database systems,
providing a broad base for comparative analysis across
diverse workload types. Experimental results demonstrate that
MorphStreamR outperforms all other schemes in the recovery
phase for all applications while experiencing less runtime
overhead. Moreover, when we increase the number of CPU
cores, MorphStreamR still maintains high performance for
different workloads, demonstrating significant scalability and
adaptability during recovery. In summary, our contributions
are as follows:

• We propose a fast parallel recovery mechanism that
records intermediate results of resolved dependencies at
runtime, and thus can eliminate data dependencies to
improve the task parallelism during failure recovery.

• We further propose selective logging incorporated with
workload-aware log commitment to mitigate the runtime
overhead of logging.

• We implement MorphStreamR and evaluate it with
several typical TSP applications. Experimental results
show MorphStreamR can significantly reduce the
recovery time by up to 3.1×, and incur much less
performance slowdown at runtime, compared with other
applicable fault tolerance approaches [10], [23], [24].

II. BACKGROUND

In this section, we present the characteristics, programming
model, and failure model of transactional stream processing.

A. Transactional Stream Processing

Transactional stream processing engines (TSPEs) process
continuous streams of data while providing transactional
guarantees [5]. In contrast to conventional SPEs such as
Storm [14], Flink [15], and Spark-Streaming [16], TSPEs
maintain shared mutable states [10]–[13], [17], which can be
referenced and updated by multiple threads spawned from the
same stream application. The concurrent accesses (i.e., read
and write) to the shared mutable states must satisfy predefined
constraints to ensure transactional semantics. In the following,



we illustrate several definitions [5], [7], [10]–[13], [17] of TSP
using Streaming Ledger.

Definition 1 (state access operation): A state access
operation is a read or write operation on shared mutable states,
denoted as Oi = Rt(k) or Wt(k, v), where t represents the
timestamp when a state access operation is triggered by an
input event, k denotes the state of a key to read or write, and
v is the value to write. Note that v may be the value of a
list of states, such as v = f(k1, k2, ..., kn), where f denotes a
user-defined function.

Definition 2 (state transaction): The set of state accesses
involved in processing a single input event is defined as a state
transaction, represented by txnt=<O1, ..., On>. Operations of
the same transaction have the same timestamp.

As shown in Figure 3, the arrival of transfer event
e2 generates one state transaction txn2=<O2, O3>, which
contains two state access operations: O2 and O3. The former
subtracts the transferred balance from the source account, and
the latter adds the same value to the target account.

TSPEs need to ensure both ACID properties [5], [7] and
stream ordering [12], [13] when scheduling state transactions.
Specifically, with a set of state transactions represented as
T=< txnt1, ..., txntn >, the schedule is correct if it is conflict-
equivalent to (txnt1 ≺ ... ≺ txntn), where ≺ represents that
the left operand precedes the right one. A key objective of
scaling transactional stream processing is to maximize system
concurrency while maintaining a correct schedule. This poses
a substantial challenge due to the inter- and intra-dependencies
among state transactions. There are mainly three types of data
dependencies, as shown in Figure 3:

Temporal Dependency (TD): Oi temporally depends on
Oj if they belong to different state transactions but access
the same state, and Oi has a larger timestamp than Oj . For
example, O2 temporally depends on O1 as they access the
same record with different timestamps.

Logical Dependency (LD): Oi and Oj exhibit logical
dependency if they belong to the same state transaction. For
example, in txn2 and txn3, the transfer must change both
accounts at a time. Hence, O3 and O5 logically depend on O2

and O4, and vice versa.
Parametric Dependency (PD): Oi = W (ki, v), with v =

f(k1, k2, ..., km), parametrically depends on Oj = W (kj , v
′)

if kj ̸= ki, kj ∈ k1, k2, ..., km, and Oi has a larger timestamp.
For example, keys handled in O1 and O3 are A and B,
respectively. Whether O3 can be performed depends on a user-
defined function, such as guaranteeing that the transferring
amount (V ) is less than the balance of the source account
(A). Therefore, O3 parametrically depends on O1 because O3

relies on the state of A, as indicated by f3(B,A, V2).

B. Programming Model

Many variants of TSPEs [5], [7], [10]–[13], [17] have
been proposed in the last decade. The common programming
model can be abstracted in a three-step procedure, as shown
in Figure 3. These three steps are recursively conducted
for every batch of input events. (i) preprocessing, where
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Fig. 3: An illustration of TSP using Streaming Ledger

input events are transformed into state transactions, including
deterministic read/write sets; (ii) state access, where all state
access operations are performed, such as updating the balance
in the target account; (iii) postprocessing, where the input
events are further processed based on the results of state access
operations, such as generating an invoice after the balance has
been transferred. Subsequently, the corresponding output is
passed to downstream operators.

C. Failure Model

In this paper, we focus on shared-memory multicore
architectures, specifically addressing failures that cause a
single-node stoppage [20], [25]. In this setup, the node is
connected to external sources/sinks through a reliable network
and has access to storage that survives failures. Upon failures,
operators need to recover from the failure point.

In the context of fault tolerance in TSP, two crucial
requirements must be met upon failures: (i) Delivery
guarantees: this means that an incoming event will apply its
effects to the computation state of the system exactly once and
is reflected in the final output. (ii) Correctness guarantees:
this means that state transactions triggered by events must
be correctly scheduled. As shown in Figure 3, event e1
should be processed exactly once, including the execution of
txn1 and the delivery of corresponding Output1. Moreover,
the scheduling of state transactions T=< txn1, txnt2, txnt3 >
should adhere to the correctness criteria as mentioned in
Section II-A.

III. REVISIT FAULT TOLERANCE FOR TSPES

This section revisits single-node fault tolerance mechanisms
and explores their limitations when they are applied to TSPE.

A. Global Checkpointing

Global checkpointing [20], [21], [26] persists operator states
periodically and performs a global rollback in case of a failure.
Consistent checkpoint coordination is achieved by checkpoint
barriers, which periodically traverse the operators from sources
to sinks. Upon receiving barriers from all upstream operators,
each operator stores its state in durable storage and propagates



the barrier to downstream operators. Besides operator states,
global checkpointing mechanisms also persist all events at the
input of the workflow. Upon failure, all operators restore their
states from the last checkpoint and reprocess lost input events.

Limitations. Global checkpointing is a simple-yet-effective
approach to guarantee fault tolerance for TSPEs, but its
recovery time is constrained by the extensive computation of
reprocessing lost input events. Although frequent checkpoints
can mitigate the overhead of reprocessing input events,
this approach compromises the runtime performance due to
increased I/O overhead.

B. Logging

Logs [22]–[24], [27], [28] are widely-used by in-memory
database management systems (DBMSs) to guarantee the
durability of transactions. DBMSs persist log records before
transactions are committed and replay them to recover the lost
state upon a system crash. A naive logging mechanism usually
results in extremely long recovery time due to sequential
log replay. Thus, dependency tracking algorithms such as
DistDGCC [23] and Taurus [24] are proposed to improve the
recovery parallelism.

However, DistDGCC and Taurus can not adapt to
TSPEs directly because they cannot guarantee exactly-
once delivery during recovery due to the streaming
processing feature. Specifically, upstream operators only
redo committed transactions to restore the application state,
without regenerating any output during recovery. As a result,
downstream operators may fail to recover the following
transaction correctly due to missing input from upstream
operators. To adapt DistDGCC and Taurus to TSP systems,
we group all state transactions triggered by a single input
event across the streaming topology and commit them together.
Since most TSP workloads [10], [12], [13] have only a few
operators in the streaming topology, the group commit incurs
trivial overhead. However, DistDGCC and Taurus are still
inefficient during runtime and recovery due to their inherent
limitations as follows.

High Performance Overhead at Runtime. DistDGCC
tracks dependencies among updated data, including incoming
and outgoing edges. However, since the size of log records
increases linearly with the number of dependencies, it results
in more computation and storage overhead for complex
dependencies in TSP. Taurus presents a lightweight parallel
logging approach that encodes inter-transaction dependencies
into a vector of logical sequence numbers (LSNs), but incurs
significant computation overhead at runtime.

Inefficient of Failure Recovery. During recovery,
DistDGCC reconstructs the dependency graph from log
records, while Taurus checks and updates the global recovery
LSN vector to guarantee a partial order among transactions.
Therefore, multiple transactions without data dependencies
can be recovered in parallel. Nevertheless, these approaches
are not cost-effective for high-performance TSPEs [12], [13]
because the cost of rebuilding dependencies or frequently
checking the LSN vector is even higher than reprocessing input
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Fig. 4: System architecture of MorphStreamR

events. Moreover, the task parallelism during recovery is still
constrained to inherent data dependencies among transactions.

IV. MORPHSTREAMR OVERVIEW

In this paper, we design a high-performance TSPE called
MorphStreamR. The goal of MorphStreamR is to achieve fast
failure recovery while guaranteeing low performance overhead
at runtime. We propose two novel designs to achieve these
goals: 1) a fast parallel recovery mechanism by exploiting
a set of dependency resolutions, and 2) selective logging and
workload-aware log commitment to mitigate the runtime
overhead of logging. We implement MorphStreamR based on
a state-of-the-art TSPE, MorphStream [12]. Figure 4 shows
an overview of MorphStreamR, which consists of a set
of Execution Managers, a Logging Manager, and a Fault-
tolerance Manager.

Execution Manager (EM). EM is the core component
of TSPE, consisting of three components: StreamManager,
TxnManager, and TxnScheduler. MorphStreamR adopts a
dual-phase approach [12], [13], including both stream and
transaction processing. In the stream processing phase,
StreamManager conducts preprocessing and postprocessing
for each batch of input events. State transactions are issued
during preprocessing but are not immediately processed.
The TxnManager identifies dependencies among these state
transactions and constructs a task precedence graph (TPG).
In this graph, vertices correspond to state access operations,
and edges represent fine-grained dependencies between
these operations. The stream processing phase periodically
transforms to the transaction processing phase, controlled by
punctuation markers [29]. During the transaction processing
phase, TxnScheduler explores the TPG to perform concurrent
operations. Finally, input events are further processed based
on the results of state access operations to generate outputs
for downstream operators.

Logging Manager (LM). LM is responsible for recording
intermediate results of resolved dependencies in a log file
implemented as a hash table. LM carefully determines what
and when to log based on the characteristics of the workload to
reduce runtime overhead (Section VI). During recovery, LM
provides dependency inspection services for EMs to achieve
various dependency-aware recovery optimizations, such as
aborting pushdown, operations restructuring, and optimized
task assignment (Section V).

Fault-tolerance Manager (FM). FM orchestrates global
checkpointing, logging, and recovery processes within the



system. It employs markers [29], a strategy used in previous
stream processing systems, to synchronize EMs and LM.
FM introduces these markers with adaptable intervals to
facilitate the coordination. Upon receiving a marker, all EMs
perform operations within the same epoch, including creating
global checkpoints and committing logs. FM also ensures the
persistence of input events to prevent data loss upon failures.
In this way, the system can recover from the failure point and
guarantee data consistency.

V. EFFICIENT RECOVERY FROM FAILURES

In this section, we first discuss dependency inspection. Next,
we detail dependency-aware recovery optimizations. Finally,
we describe our recovery protocol.

A. Dependency Inspection

MorphStreamR records intermediate results of resolved
dependencies among state transactions to achieve parallel
recovery. We argue that the limited parallelism of state
transactions during recovery mainly stems from logical
dependencies (LDs) and parametric dependencies (PDs).
Since state access operations with temporal dependencies
(TDs) target the same state, threads can process operations
following the TDs in parallel, with each thread targeting a
different state. However, LDs and PDs represent dependencies
between different states, requiring additional communications
and synchronizations among threads to resolve these
dependencies. More importantly, LDs and PDs can be
eliminated using deterministic results. Based on these
observations, MorphStreamR tracks LDs and PDs and records
the following intermediate results during runtime to enable fast
parallel recovery and ensure data consistency.

1) Results of logical dependencies: LDs implies that
aborting one state access operation often leads to aborting all
state access operations in the same state transaction. Therefore,
we record the unique identifier of the aborted state transaction.
This enables MorphStreamR to efficiently handle transaction
aborts during recovery and reduce the overhead due to retrying
operations and ensuring ACID properties.

2) Results of parametric dependencies: PDs implies that
the update to a value depends on the execution of another
operation. To guarantee deterministic computations and data
consistency during recovery, MorphStreamR has to obtain the
same value as before the failure. Therefore, we record the
intermediate results of parametric dependencies at runtime.

The data structures of the intermediate results are illustrated
in Figure 5. As explained in Section IV, input events are
divided into epochs using punctuation markers. Consequently,
the AbortView and ParametricView are organized
into segments corresponding to these punctuation markers
(Epoch_ID). The transaction ids (Txn_ID) of aborted
transactions are directly stored in the AbortView. Each
ParametricView contains the necessary information to
resolve dependencies and can be referenced using the
(From_key, To_key) pair. For example, assume there are
two operations O1 = Write(A) and O2 = Write(B, v),

AbortView
Epoch_ID Txn_ID

ParametricView
Epoch_ID Txn_ID From_key To_key Result

Fig. 5: Data structures of intermediate results

where v = f(A). Thus, O2 has a PD on O1. Once the
dependency is resolved, we record the intermediate result of
f(A), which can be referenced using the (A,B) pair.

B. Dependency-aware Recovery Optimization

By utilizing dependency inspection, MorphStreamR enables
several optimizations to improve the parallelism of state
transactions during recovery as follows.

1) Abort Pushdown: Abort pushdown is a recovery
optimization technique for aborting transactions early if
these transactions would abort eventually during their normal
executions. MorphStreamR directly aborts input events based
on the intermediate results of resolved LDs (AbortViews).
The abort pushdown mechanism offers several advantages: (i)
Simplified error handling: As mentioned in Section II-B, the
processing of each event involves three phases: preprocessing,
state access, and postprocessing. The transaction aborting is
usually handled during the state access phase. However, if
we discard input events that eventually lead to transactions
aborting before the preprocessing stage, MorphStreamR
can avoid the subsequent unnecessary computations in the
pipeline. (ii) Improved parallelism during recovery: Abort
pushdown eliminates the need to identify and verify LDs
among state access operations, and thus further improves
parallelism during recovery and reduces synchronization
operations between threads. (iii) Reduced overhead: By
identifying and discarding input events that could lead to
transaction aborts in advance, MorphStreamR can efficiently
eliminate the computation overhead of transaction rollbacks
and redo operations.

2) Operation Restructuring: It is essential to guarantee
the correct order of state transaction processing during the
recovery of TSPEs. However, unresolved dependencies can
impede state access operations and limit their parallelism. To
address this issue, MorphStreamR records intermediate results
of resolved dependencies at runtime and directly retrieves the
result to resolve dependencies, without communication among
threads. As a result, state access operations can be rearranged
into separate chains that can be executed by threads without
lock contention.

Figure 6 illustrates the operation restructuring during the
recovery process. When transactions arrive, MorphStreamR
converts them into atomic state access operations and identifies
dependencies. Since MorphStreamR has already filtered the
events that would lead to transaction aborts through abort
pushdown, it can eliminate LDs (O2 → O3 and O4 → O5) for
these transactions. When PDs (O1 → O3 and O3 → O5) need
to be resolved, operations can directly retrieve the intermediate
results from ParametricView. Then, these operations are
partitioned based on the target state keys and inserted into
a sorted list known as chains. Operations in each chain
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are arranged according to their timestamps to facilitate the
identification of TDs among operations. Finally, operations are
restructured into two independent sets (O1, O2, O5) and (O3,
O4). In this way, the two chains can be executed in parallel.

3) Optimize Task Assignment: MorphStreamR efficiently
assigns tasks among worker threads via two steps: grouping
state access operations and task assignment.

Grouping state access operations: Using abort pushdown
and operation restructuring mechanisms, there are only TDs
among state access operations. Thus, we group state access
operations within a single chain into a single task to improve
data locality. This approach ensures that state access operations
for a given state are executed by one thread, thereby reducing
cache misses and improving performance.

Task assignment: MorphStreamR can effectively eliminate
potential transaction aborts or arbitrary synchronization among
threads by using abort pushdown and operation restructuring
techniques. As a result, the task execution time is mainly
determined by the number of state access operations performed
by each thread. In our implementation, we utilize a greedy
algorithm to achieve a fair task assignment among threads.
The algorithm starts by sorting tasks according to their weights
which are equivalent to the number of state access operations.
Subsequently, it iterates over the sorted tasks in a decreasing
order and greedily assigns each task to worker threads with
the minimum workload in that iteration. This process continues
iteratively till all tasks are assigned.

C. Recovery Protocol

MorphStreamR exploits the above dependency inspection
and dependency-aware recovery optimization techniques to
improve the recovery parallelism. Figure 7 shows the recovery
process of MorphStreamR. We highlight the steps of our
recovery protocol in red.

Restore from Checkpoints: During recovery, the Fault-
tolerance Manager loads the metadata of global checkpoints
from stable storage 1 . Subsequently, MorphStreamR restores
all executors which then restore application states from the
latest checkpoint 2 .

Construct Intermediate Results: To support dependency-
aware recovery optimization, the Logging Manager (LM)
constructs the intermediate results from the log records before
replaying lost input events 3 . It delivers two key services by
using these historical records: it enables Execution Managers
(EMs) to verify whether a state transaction would abort
eventually, allowing for handling potential aborts in advance.
Moreover, it allows EMs to access the intermediate results of
resolved dependencies to eliminate PDs.
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Replay Input Events: When MorphStreamR replays
input events, the dependency-aware recovery optimizations
discussed in Section V-B are applied. MorphStreamR reloads
the input events from a specified offset according to the latest
checkpoint 4 . Then, EM handles all transactions that would
abort in the future by checking the resolved LDs 5 . During the
preprocessing phase, EM does not track LDs for the remaining
transactions and accesses the intermediate results to eliminate
PDs. Therefore, operations are restructured into independent
sets 6 . Subsequently, MorphStreamR assigns tasks to EMs
based on optimized task assignment 7 , and EMs perform all
state accesses in parallel during the state access phase.

VI. EFFICIENT RUNTIME

To reduce the performance overhead at runtime,
MorphStreamR exploits selective logging to determine
which dependencies should be recorded, and leverages
workload-aware log commitment to determine how logs are
committed.

A. Selective Logging

MorphStreamR selectively tracks data dependencies across
partition boundaries. Since these dependencies lead to a lot of
communication overhead among threads, MorphStreamR can
reduce the size of logs while maintaining recovery efficiency
by eliminating these dependencies. To achieve selective
logging, MorphStreamR partitions state access operations into
different groups at runtime and handle dependencies within
partitions during recovery as follows.

1) Graph-based Partitioning: To determine which data
dependencies should be tracked, MorphStreamR has to
partition state accesses into different groups. We should
make a careful trade-off between the logging cost and the
recovery time by considering two objectives: (i) ensuring that
each worker thread receives a similar amount of workload,
and (ii) reducing the number of dependencies that need to
be recorded. To achieve these goals, MorphStreamR takes
into account data locality by treating each chain of state
access operations (according to TDs) as a vertex, where
the weight of the vertex corresponds to the number of
operations. Similarly, the weight of an edge represents the
number of LDs and PDs between two chains. This graph
partitioning is a well-known problem [30], and we utilize a
greedy algorithm proposed by Yao et al. [31] to partition the
graph. This algorithm ensures load balancing across partitions
and reduces the number of dependencies among partitions.
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Then, MorphStreamR only tracks and maintains dependencies
among partitions at runtime.

2) Shadow-based Exploration: Since the selective logging
approach only records inter-partition dependencies, we still
have to resolve intra-partition dependencies during recovery.
Thus, MorphStreamR introduces shadow operations as
placeholders for operations with unresolved dependencies
within a partition. Each shadow operation represents a
dependency for a specific operation and is inserted into the
chain which its dependent operations belong to. We set the
condition-variable-check [30] as the first state access operation
on which other operations in the same state transaction are
logically dependent.

During operation restructuring (Section V-B2), PDs and
LDs among partitions are speculatively resolved using
intermediate results. For an operation with dependencies
that lack intermediate results, MorphStreamR inserts shadow
operations into the chains of its dependent operations.
Operations in these chains are sorted based on timestamps to
accurately resolve TDs. Shadow operations are inserted into
the place where the operations they depend on. Note that,
shadow operations do not introduce new dependencies as they
merely serve as placeholders for unresolved dependencies.
During recovery, when MorphStreamR encounters a shadow
operation, it reduces the count of dependencies associated with
that operation by one, indicating that one of the dependencies
of this operation has been resolved. If an operation still
has unresolved dependencies in another operation chain,
MorphStreamR turns to process the corresponding chain until
all operations have been executed.

For instance, there are five operations involved in two
operation chains in Figure 8. For PD (O1 → O3) and LD
(O2 → O3), MorphStreamR inserts two shadow operations for
O3 after O1 and O2, respectively. Likewise, MorphStreamR
inserts two shadow operations for O5 after O3 and O4,
respectively 1 . After constructing the operation chains,
MorphStreamR initiates execution by selecting the operation
chain starting with O1. As O1 is executed, MorphStreamR
encounters the shadow operation of O3 and reduces the count
of dependencies for O3 2 . After O2 has been executed,
all dependencies of O3 are resolved. Thus, O3 is marked
as a ready operation 3 . Next, MorphStreamR identifies
that O5 depends on O3 and O4, and these dependencies
remain unresolved. Accordingly, MorphStreamR processes
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the corresponding operation chain (O3, O4) to resolve the
remaining dependencies 4 .

B. Workload-Aware Log Commitment

Since different workload characteristics have an impact on
the TSP performance during runtime and recovery, we propose
workload-aware log commitment to make a trade-off between
the logging overhead and the recovery efficiency.

1) Exploiting Workload Characteristics: To accurately
profile workload characteristics, two critical factors are taken
into account: (i) the skewness of state accesses. We model
it using a Zipfian [12], [13] distribution, i.e., certain states
may be accessed more frequently than others. (ii) the number
of data dependencies. The ratio of different transaction types
usually affects the number of data dependencies. For example,
a larger proportion of state transactions involving multiple
partitions may result in more PDs. To characterize these factors
for dynamic workloads, some techniques such as time series
analysis [32] and machine learning based prediction [33] are
required for online profiling. Since these techniques are not the
primary focus of this paper, we intend to study this problem
in the future.

2) Adaptive Log Commitment: We further propose an
adaptive log commitment mechanism to make a trade-off
between the logging overhead and the recovery performance.
Figure 9 shows the TSP performance during runtime and
recovery under various log commitment epochs, in which
a number of events are successfully handled. These curves
represent distinct levels of state access contention for the same
workload. The marker position represents the performance
corresponding to different log commitment epochs. Based on
experimental results and theoretical analysis, we can make
a tradeoff between the runtime overhead and the recovery
efficiency as follows.

For workloads with low data contention (LSFD), a larger
epoch is beneficial for the performance of both runtime
and recovery. This is because state accesses are uniformly
distributed. Thus, larger epochs allow to batch more operations
for commitment, resulting in improved performance. However,
for workloads with low skewness and more dependencies
(LSMD), large epochs do not necessarily improve the recovery
performance. This is because larger epochs result in more
overhead in indexing intermediate results for dependency
inspection, which offsets the benefit of group commit.

For workloads with high data contention (HSMD and
HSFD), MorphStreamR shows inverse performance trends
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during runtime and recovery when the commitment epoch
increases. MorphStreamR shows worse runtime performance
with larger epochs because skewed state accesses often
result in load imbalance. With smaller epochs, operations
have a potential to be distributed more evenly, and thus
the system performance is improved. However, large epochs
are still effective for improving the recovery efficiency
because MorphStreamR has more opportunities to explore task
parallelism through dependency-aware optimizations.

C. Runtime Operations

Figure 10 illustrates the workflow (highlighted in red) of
MorphStreamR during runtime. It includes the following steps:

Persist Input Events: In this step, a spout is responsible
for persisting input events in batches 1 . These events are
stored in a reliable storage system before further processing.
This enables correct recovery of TSPEs from the failure point,
avoiding data loss and ensuring data consistency.

Record Intermediate Results: State transactions are issued
during the stream processing phase but are not immediately
processed. The Execution Manager (EM) first identifies
dependencies among these state transactions and further
processes them during the transaction processing phase.
The Logging Manager (LM) is responsible for recording
the intermediate results of resolved dependencies. When a
dependency is resolved, the corresponding EM delivers the
intermediate result to the LM 2 .

Orchestrate FM, EM, and LM: The Fault-tolerance
Manager (FM) injects markers 3 in reconfigurable intervals
to orchestrate FM, EM, and LM. These markers include three
types: (i) transaction marker, which controls the transition
between stream processing and transaction processing; (ii)
commit marker, which notifies the LM to persist the
intermediate results; and (iii) snapshot marker, which
commands the database to take a snapshot of its current state.
By default, the transaction marker and commit marker are
aligned. To adjust the log commitment epoch based on data
contention levels, MorphStreamR generates commit markers
with different frequencies, as discussed in Section VI-B.

Checkpoint/Log Commit and Garbage Collection: To
optimize the I/O bandwidth of SSDs, EMs utilize non-blocking
APIs with asynchronous notifications to persist snapshots
and intermediate results. This allows EMs to continue the
post-processing since no state access operations are involved
during this phase. The intermediate results can be immediately
committed 4 after persistence as they are only used as a

reference during recovery. However, the snapshot must wait
until all subsequent processing is completed before being
committed 5 . Once all outputs are generated, the EM notifies
the FM to commit the snapshots. FM waits for notifications
from all EMs before committing the snapshot 6 . The recorded
input events and intermediate results can be deleted upon the
completion of the current checkpoint.

VII. DISCUSSIONS

In this paper, we focus on fault tolerance for TSPEs in
shared-memory multicore architectures. However, adaptation
of TSPEs and MorphStreamR to distributed environments
needs careful considerations for distributed execution models,
failure-recovery models, and logging overhead.

There are several challenges to adapt TSPEs to distributed
environments. 1) In multicore architectures, MorphStreamR
relies on dependency graph based scheduling mechanisms
to achieve high-performance state transactions. However, in
distributed environments, the dependency construction and
resolution of distributed state transactions are much more
costly due to high overhead of inter-node communication.
2) Since applications’ states are shared by multiple TSPEs
in distributed environments, caching becomes more essential
due to the high latency of remote state accesses. However,
it is challenging to implement a high-performance software-
managed DRAM cache because guaranteeing cache coherence
is extremely expensive in distributed environments. One
potential approach to these challenges is to leverage high-
throughput and low-latency RDMA networks for fast access to
distributed shared application states. Moreover, programmable
RDMA switches [34] can be exploited for in-network locking
operations, and thus can significantly reduce the cache
coherence overhead and mitigate network congestion.

There are also several challenges to achieve fast
failure recovery for TSPEs in distributed environments. As
application states are stored in the local memory of each
node and shared across distributed nodes, it is challenging
to guarantee data consistency among failed nodes and
surviving nodes. 1) When considering distributed shared states,
global checkpointing [35] becomes more complex compared
with traditional distributed SPEs because application states
distributed on different nodes may be updated asynchronously
by distributed state transactions. It is challenging to achieve
high performance at runtime while guaranteeing transaction-
consistent global checkpoints [36]. 2) When a failed node is
restoring, the shared mutable state may have been updated by
other surviving nodes, resulting in nondeterministic outputs. It
is challenging to achieve high availability while guaranteeing
strong data consistency. One potential approach to these
challenges is to leverage lineage-based [37] or causal-
based [38] logging mechanisms. We plan to study fast fault-
tolerance mechanisms for distributed TSPEs in the future.

In distributed environments, the logging overhead at runtime
can be magnified significantly. To address this issue, we plan
to explore the following mechanisms: 1) removing the logging
operation from the critical path of task execution, like Lineage



Stash [37]; 2) leveraging emerging computational storage
devices [39] for log compression/decompression/truncation,
and garbage collection; 3) exploring RDMA [40] networks
and persistent memory [41], [42] to accelerate log persisting.

VIII. EVALUATION

In this section, we evaluate MorphStreamR by comparing
it with several fault tolerance protocols. The source code
and experiments in this paper are available at Github
https://github.com/CGCL-codes/MorphStreamR [43].

A. Methodology

Hardware Platform. We run all experiments on a 2-socket
Intel Xeon Gold 5220 server with 512GB of memory and
a local 480GB Intel Optane SSD (write bandwidth: 2GB/s,
IOPS:146k). Each socket contains thirty-six 2.20GHz cores
and 24.75 MB of LLC cache. By default, all experiments are
conducted using cores on a single socket.

Comparisons. The state-of-the-art MorphStream [12] does
not support fault tolerance. To make a comprehensive and
fair comparison with MorphStreamR (MSR), we implement
several fault-tolerance mechanisms and apply them to
MorphStream [12].

Native (NAT). We use the native MorphStream [12] as
a baseline, serving as a performance upper bound during
runtime.

Global Checkpointing (CKPT). We implement the
commonly used global checkpointing mechanism and apply
it to MorphStream.

Write-Ahead Logging (WAL). We apply command logging
to MorphStream because it can lower the pressure on I/O [22].

LSN Vector (LV). Like Taurus [24], we encode inter-
transaction dependencies into a vector of logic sequence
numbers to preserve partial orders between dependent
transactions during recovery.

Dependency Logging (DL). We also implement the logging
scheme of DistDGCC [23], which records fine-grained
dependency graphs [23]. Each log record contains dependency
information such as incoming and outgoing edges. During
recovery, the dependency graph is rebuilt first, and then the
log is replayed.

Benchmarks. We use the following representative
benchmarks [12], [13] for a comprehensive evaluation.

Streaming Ledger (SL) represents a real-world stream
application suggested by a recent commercial TSPE [6].
It transfers money and assets between accounts, including
transfer state transactions that transfer balances between user
accounts and assets tables, and deposit state transactions that
top up user accounts or assets.

Grep and Sum (GS) represents a workload scenario where
an application modifies shared mutable states [12], [13]. Each
Sum state transaction reads a list of states and writes the
summation results back to the first one.

Toll Processing (TP) simulates traffic on roads divided into
segments, and calculates tolls based on congestion [18]. Two
mutable tables record the average traffic spend of a road

segment and the counts of unique vehicles. Each vehicle report
triggers one toll processing state transaction that modifies
related records (road speed and the counts of unique vehicles)
and calculates the toll.

Workload Characteristics. These typical workloads cover
a wide range of TSP features. Specifically, SL has a
relatively high number of dependencies, where state access
operations may be parametrically dependent on each other.
GS shows a more skewed workload compared with others. TP
represents a workload where transaction aborting is common.
By choosing workloads with different characteristics, we can
comprehensively evaluate the effectiveness of our techniques,
which are designed to handle various types of workloads.

B. Recovery Performance

In this section, we evaluate the recovery time of different
fault-tolerance mechanisms.

Recovery Time. As shown in Figure 11, MorphStreamR
demonstrates a significant reduction of recovery time
compared with other schemes for all applications. It reduces
the recovery time by 3.1 times for GS, 1.7 times for TP, and 1.8
times for SL, compared with sub-optimal approaches. In the
following, we provide the recovery time and factor analysis
to give a deeper understanding of the benefits of various
dependency-aware recovery optimizations.

Breakdown Analysis. We show the breakdown of the
recovery time for the following operations. 1) Reload Time
refers to the time spent on reloading states, input events,
and log records. 2) Execute Time refers to the time spent
on performing state access operations and user-defined
computations. 3) Construct Time refers to the time spent on
identifying dependencies and constructing the auxiliary data
structures. 4) Abort Time refers to the time spent on handling
state transactions aborts. 5) Explore Time refers to the time
spent on exploring available operations to process. 6) Wait
Time refers to the time spent on synchronization, including
potential waiting time due to load imbalance.

Figure 11 shows the execution time of different operations
during recovery for different applications. We have four
major observations. First, WAL exhibits the longest wait
time among various recovery techniques due to sequentially
redoing command logs. Surprisingly, WAL also spends the
longest time on reloading. Our further experiments reveal
the reason is that all threads need to ensure a global order
of committed logs, and thus a lot of time is spent on
sorting. Second, LV and DL pose other problems while
improving the task parallelism during recovery. DL spends
substantial time on constructing dependency graphs because
it needs to identify data dependencies among a large number
of log records. Also, LV exhibits higher explore time for
SL due to a large number of data dependencies. This is
because it heavily relies on the inherent parallelism of
workloads. In contrast, MorphStreamR can further improve
the task parallelism during recovery by using the intermediate
results of resolved dependencies, leading to minimal explore
time in all workloads. Third, MorphStreamR benefits from

https://github.com/CGCL-codes/MorphStreamR
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Fig. 12: Subfigure (a) shows the runtime throughput of different systems, and subfigure (b) shows the effectiveness of selective
logging using SL. Subfigure (c) and (d) show the overhead of MorphStreamR using SL.

abort pushdown, which eliminates the time used to handle
transaction aborts during recovery. Fourth, MorphStreamR
can achieve optimal task assignment and scheduling because
logical dependencies and parametric dependencies are
eliminated. This is particularly useful for load-imbalanced
applications such as GS because MorphStreamR substantially
eliminates the straggler problem.

Factor Analysis. In this study, we conduct factor analysis
to identify the key operations that affect the recovery
efficiency. Simple denotes running MorphStreamR without
recovery optimizations. +OpRestructure represents
restructuring state access operations that use the intermediate
results to resolve dependencies (Section V-B2). +AbortPD
further reduces the recovery time of handling transaction
aborts (Section V-B1). +OptTaskAssign further adopts
our optimized task assignment (Section V-B3). We note that
these optimizations are incrementally added. Figure 11d
shows the impact of each optimization on the recovery
performance for different workloads. For workloads (SL)
with a large amount of dependencies, operation restructuring
(+OpRestructure) yields the largest performance
improvement by reducing the number of dependencies and
improving task parallelism. In contrast, for skewed workloads
(GS), the optimized task assignment (+OptTaskAssign)
offers a significant performance improvement by distributing
tasks evenly. At last, for workloads with a high number of
transaction aborts (TP), the abort pushdown (+AbortPD)
mechanism delivers a significant performance improvement
by early aborting transactions.

C. Runtime Performance
In this section, we compare the runtime performance of

various fault-tolerance schemes and validate the effectiveness
of selective logging.

Runtime Performance. Figure 12a shows that CKPT leads
to the least performance overhead at runtime as it does
not record any log. However, it results in more time spent
in failure recovery, as shown in Figure 11. MorphStreamR
incurs acceptable runtime overhead, about 12.1% and 5.4%
performance degradation compared with NAT and CKPT,
respectively. Compared with other log-based approaches
(WAL, DL, LV), MorphStreamR can improve the runtime
throughput by up to 30% because the logging overhead is
significantly reduced.

Effectiveness of Selective Logging. To assess the efficiency
of selective logging, we introduce a new metric–logging
efficiency, which is calculated as the recovery performance
improvement divided by the runtime performance degradation.
A higher value implies higher recovery performance with less
impact on the runtime performance. Figure 12b shows the
results of our evaluation, comparing MorphStreamR with and
without selective logging for workloads with varying numbers
of dependencies. When the proportion of multi-partition
transactions is relatively low (e.g., 10% to 50%), the logging
efficiency without selective logging is higher because the
overhead of logging (e.g., tracing and serializing log records)
is not significant in scenarios with fewer dependencies, making
the algorithmic overhead of selective logging more prominent.
However, when the proportion of multi-partition transactions
increases, the number of dependencies in the workload also
increases. In such cases, it is beneficial for selectively logging
critical dependencies using an algorithmic approach because
it reduces the size of log records.

D. Overhead Analysis
In this section, we evaluate the overhead introduced

by MorphStreamR in terms of memory consumption and
additional execution time.
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Fig. 14: Workload sensitivity study

Memory Footprint. In this study, we use SL to evaluate the
system’s memory footprint. Figure 12c shows the maximum
memory consumption of SL with different fault-tolerance
mechanisms at runtime. MorphStreamR, LV, and DL increase
about 20%, 38%, and 35% more memory footprints than
CKPT. MorphStreamR shows lower storage overhead than
other mechanisms since our logging mechanisms can reduce
the size of logs. Moreover, since the memory resource
occupied by logs is reclaimed periodically by the JVM
garbage collector [12], the maximum memory footprint of
MorphStreamR is acceptable.

Runtime Overhead. Figure 12d shows the runtime
overhead relative to the native execution (NAT). It includes
the following factors: 1) I/O Time refers to the time spent on
serializing and persisting important data, such as log records,
and application state. 2) Tracking Time refers to the time
spent on tracking dependencies and constructing log records
required for recovery. 3) Sync Time refers to the time spent
on synchronization for a global consistent snapshot and log
commitment. We have two major observations. First, selective
logging can significantly reduce the I/O and tracking time due
to the reduced number of intermediate results that need to
be recorded. In contrast, LV incurs the most I/O and tracking
overhead as it has to track all dependencies and generate LSN
vectors. Second, I/O overhead is still the major performance
bottleneck for all mechanisms. Advanced data compression
techniques [20], [44], [45] can be exploited to reduce the cost
and memory consumption of I/O operations.

E. Scalability Study

In this section, we evaluate the scalability of MorphStreamR
as the number of cores increases. Figure 13 shows the
recovery performance (input events recovered per second)
of different applications under various approaches. First,
MorphStreamR scales effectively across all applications
with an increasing number of cores. This is because,

MorphStreamR can restructure the operations into independent
chains by dependency inspection, which can be evaluated in
parallel without lock contention. Second, CKPT demonstrates
good scalability in low-contented workloads, such as little
parametric dependencies (TP) or uniformly distributed
state access (SL), benefiting from adaptive scheduling
strategies [12]. However, it is bounded by synchronization
overhead in high-contented workloads (GS), which hinders
recovery performance as the number of cores increases.
Third, when the number of cores is low, WAL, DL, and LV
perform slightly better than MorphStreamR, especially for TP.
When only one core is available, both approaches execute
state transactions sequentially. However, MorphStreamR
involves constant overhead due to dependency-aware recovery
optimization. Fourth, LV does not exhibit good scalability
across all workloads. As the number of cores increases to a
certain degree, it is constrained by the inherent parallelism of
the workload such as imbalance state access (GS) or complex
dependencies among state transactions (SL).

F. Workload Sensitivity Study

In this section, we evaluate the impact of workload
characteristics using Grep&Sum due to its flexibility.

Impact of Multi-Partition State Transaction. To
isolate the impact of multi-partition transactions, we set
the state access skew factor to 0 and exclude aborting
transactions. The results are shown in Figure 14a with
two key observations. First, as the ratio of multi-partition
transactions increases, MorphStreamR outperforms other
approaches because dependency inspection mitigates the
impact of increased exploration overhead caused by parametric
dependencies among partitions. Second, as the ratio of multi-
partition transactions further increases, the performance of
MorphStreamR degrades. This is because the construction
of intermediate results becomes more time-consuming as
more dependencies need to be tracked. The additional



overhead in constructing intermediate results offsets the
benefits of MorphStreamR’s dependency inspection, resulting
in decreased performance.

Impact of State Access Skewness. We conduct a write-
only workload in this study, where the ratio of multi-partition
state transactions is 0 and no transaction aborts is encountered.
Figure 14b shows the impact of varying state access skewness.
First, LV performs best when state accesses are uniformly
distributed due to its low overhead in preserving recover order
using LSN vectors. In contrast, MorphStreamR and CKPT
require auxiliary data structures for scheduling, resulting in
higher overhead. Second, MorphStreamR is tolerant to state
access skewness, while LV and CKPT perform worse as
skewness increases due to load imbalance. This is because
MorphStreamR can optimize task assignment, resulting in
improved overall performance. Third, varying the state access
skewness has a minor effect on system performance under DL
and WAL. This is because their performance are dominated
by other overheads. As shown in Figure 11, DL spends more
time constructing dependency graphs, while WAL has to redo
command logs in sequential order.

Impact of Aborting Transactions. Figure 14c shows
the throughput during recovery as the percentage of events
triggering abort transactions changes from 0% to 80%. First,
CKPT experiences an initial performance drop when the
percentage of aborting transactions increases (e.g., 20%),
due to the overhead of redoing transactions. However, as
the percentage further increases, the overall throughput of
CKPT gradually improves as the number of aborted operations
reduces the redo time. Second, MorphStreamR has better
performance than other approaches by discarding input events
that would lead to aborted transactions early. However, this
performance improvement is not always guaranteed (e.g.,
80%) as it involves overhead of reloading and checking the
intermediate results. Third, the performance of WAL improves
with an increasing percentage of aborting transactions since it
only needs to redo the committed log records.

IX. RELATED WORK

TSP has been increasingly studied in recent years [5], [7],
[10]–[13], [17]. Previous TSPEs mainly focus on performance
optimization of stream transactions, and very few efforts have
been made on the fault-tolerance. For instance, S-Store [10]
adopts the checkpoint and command-log implemented in a
DBMS–H-Store [46]. TSpoon [11] incorporates write-ahead
logging into Flink’s global checkpointing. Some TSPEs such
as T-Stream [13] and MorphStream [12] even do not adopt
any fault-tolerance mechanism. To the best of our knowledge,
MorphStreamR is the first study on fault-tolerance of TSPEs.

Despite little work related to fault tolerance for TSPEs,
there have been many fault tolerance mechanisms for SPEs.
Some SPEs such as Storm [14] and Heron [47] provide
best-effort fault tolerance, with at-most-once or at-least-once
processing semantics for each event. Other SPEs like AF-
Stream [48], [49] provide approximate fault-tolerance for
specific scenarios such as data synopsis and online machine

learning. However, both best-effort and approximate fault
tolerance mechanisms can not guarantee ACID properties of
state transactions because they may lose states or input data
upon system failures. A few SPEs such as Flink [15], [21] and
Spark Streaming [50] support exactly-once semantics. When
their fault tolerance mechanisms are applied to TSPE, they
often result in a long recovery time due to complex data
dependencies among state transactions. Thus, these approaches
are impractical when directly applying them to TSPEs.
In contrast, MorphStreamR also guarantees exactly-once
semantics and further offers several dependency resolution
techniques to achieve fast parallel recovery.

Recently, a number of dependency tracking algorithms [23],
[24] have been proposed to improve the recovery parallelism
in DBMSs. Taurus [24] uses a vector of logical sequence
numbers to encode inter-transaction dependencies and
maintains their partial orders during recovery. DistDGCC [23]
speeds up system recovery by logging fine-grained dependency
graphs. However, since they only record dependencies among
transactions, the application performance during recovery is
limited by the inherent parallelism of workloads, especially
for workloads with high state access contention. In contrast,
MorphStreamR records the intermediate results of resolved
dependencies to eliminate data dependencies, and thus further
exploits task parallelism during recovery.

X. CONCLUSION

TSPEs are vulnerable to system crashes and power
outages, especially for long-term and compute-intensive data
streams. In this paper, we propose MorphStreamR to achieve
fast failure recovery while guaranteeing low performance
overhead at runtime. By recording intermediate results of
resolved dependencies at runtime, MorphStreamR introduces
dependency-aware execution optimizations for recovery,
including abort pushdown, operations restructuring, and
optimized task assignment. Moreover, MorphStreamR exploits
selective logging and workload-aware log commitment to
reduce the runtime overhead. Experimental results demonstrate
that MorphStreamR can significantly improve the recovery
performance at scale for various workloads, compared with
state-of-the-art fault-tolerant mechanisms.
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[44] P. Damme, A. Ungethüm, J. Hildebrandt, D. Habich, and W. Lehner,

“From a Comprehensive Experimental Survey to a Cost-based Selection
Strategy for Lightweight Integer Compression Algorithms,” ACM
Transactions on Database Systems (TODS), vol. 44, pp. 1–46, 2019.

[45] X. Zeng and S. Zhang, “Parallelizing Stream Compression for IoT
Applications on Asymmetric Multicores,” in Proceedings of the 2023
IEEE 39th International Conference on Data Engineering (ICDE), 2023,
pp. 950–964.

[46] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, “H-Store: A High-performance, Distributed Main Memory
Transaction Processing System,” Proceedings of the VLDB Endowment
(PVLDB), vol. 1, pp. 1496–1499, 2008.

[47] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
Processing at Scale,” in Proceedings of the 2015 ACM International
Conference on Management of Data (SIGMOD), 2015, pp. 239–250.

[48] Q. Huang and P. P. Lee, “Toward High-performance Distributed Stream
Processing via Approximate Fault Tolerance,” Proceedings of the VLDB
Endowment (PVLDB), vol. 10, pp. 73–84, 2016.

[49] Z. Cheng, Q. Huang, and P. P. Lee, “On the Performance and
Convergence of Distributed Stream Processing via Approximate Fault
Tolerance,” The VLDB Journal (VLDBJ), vol. 28, pp. 821–846, 2019.

[50] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, “Structured Streaming: A Declarative API for
Real-Time Applications in Apache Spark,” in Proceedings of the 2018
International Conference on Management of Data (SIGMOD), 2018, pp.
601–613.

https://github.com/CGCL-codes/MorphStreamR

	Introduction
	Background
	Transactional Stream Processing
	Programming Model
	Failure Model

	Revisit Fault Tolerance for TSPEs
	Global Checkpointing
	Logging

	MorphStreamR Overview
	Efficient Recovery from Failures
	Dependency Inspection
	Dependency-aware Recovery Optimization
	Abort Pushdown
	Operation Restructuring
	Optimize Task Assignment

	Recovery Protocol

	Efficient Runtime
	Selective Logging
	Graph-based Partitioning
	Shadow-based Exploration

	Workload-Aware Log Commitment
	Exploiting Workload Characteristics
	Adaptive Log Commitment

	Runtime Operations

	Discussions
	Evaluation
	Methodology
	Recovery Performance
	Runtime Performance
	Overhead Analysis
	Scalability Study
	Workload Sensitivity Study

	Related Work
	Conclusion
	References

