
MorphStream: Scalable Processing of Transactions
over Streams

Siqi Xiang∗ Zhonghao Yang∗ Jianjun Zhao† Yancan Mao‡ Shuhao Zhang§
∗Singapore University of Technology and Design †Huazhong University of Science and Technology

‡National University of Singapore §Nanyang Technological Univeristy
{siqi xiang, zhonghao yang}@mymail.sutd.edu.sg, curry zhao@hust.edu.cn

maoyancan@u.nus.edu, shuhao.zhang@ntu.edu.sg

Abstract—In the realm of transactional stream processing
(TSP), the challenge lies in providing a unified execution
model that seamlessly integrates transactional and stream-
oriented capabilities. Existing TSP engines (TSPEs) largely
employ non-adaptive scheduling techniques, leaving multicore
parallelism underutilized due to intricate workload dependencies.
We demonstrate MorphStream, a state-of-the-art TSPE built
for unprecedented scalability on multicores. MorphStream
distinguishes itself by employing an adaptive scheduling
algorithm, explicitly designed to unlock the full potential
of multicore architectures even under complex workload
conditions. This enables MorphStream to make optimal
trade-offs in performance metrics under varying workload
characteristics. To enhance user engagement, the demonstration
will showcase MorphStream’s graphical user interface,
specifically engineered to simplify the implementation and
deployment of complex streaming applications while providing
detailed and comprehensive performance monitoring and
analytics for the job execution runtime.

I. INTRODUCTION

Transactional stream processing (TSP) can be broadly
defined as processing streaming data with correctness
guarantees, including those intrinsic to stream processing (such
as time order and exactly-once semantics), as well as the
ACID guarantees found in traditional databases [1]. TSP
has gained popularity in recent years due to its ability to
support novel applications and system optimizations, with
use cases often involving streaming facilities to persist or
offer near-real-time views of shared state, while transactional
facilities ensure a consistent representation of the shared state.
TSP engines (TSPEs) [2], [3], [4], [5] have been proposed,
but existing TSPEs mostly rely on locks and simple non-
adaptive scheduling strategies, resulting in significant overhead
and poor utilization of modern parallel hardware [4]. The
scalability limitation of existing TSPEs limits their practicality.

Scaling TSPEs is challenging because of the non-
trivial combination of both transaction and stream-oriented
properties in TSPEs that lead to complicated workload
dependencies. To tackle this challenge, we have developed
MorphStream [6], a novel TSPE with excellent scalability
on multicores. Similar to other TSPEs, MorphStream adopts
transactional semantics during the processing of continuous
data streams, where accesses to the shared state are modelled
as state transactions. Different from others, MorphStream
identifies the fine-grained temporal, logical, and parametric

dependencies among state access operations of a batch
of state transactions. Then, it maps the workloads with
dependencies into a task precedence graph (TPG), where
vertexes map to state access operations, and edges map to
fine-grained dependencies among operations. Based on the
TPG, MorphStream exploits the full potential of hardware
parallelism by decomposing the scheduling strategy into three
dimensions of scheduling decisions: 1) structured or non-
structured exploration strategies, 2) single operation or group
of operations as the unit of scheduling, and 3) lazy or eager
abort handling mechanisms. Subsequently, MorphStream
can adaptively switch to a different scheduling strategy by
making suitable scheduling decisions in each dimension,
guided by a heuristic-based decision model that analyzes the
trade-offs under varying workload characteristics.

Our demo will showcase how MorphStream can
effectively support novel stream applications involving the
processing of transactions over streams. In particular, we
cover three novel aspects of MorphStream: 1) Programming
APIs: With MorphStream, users can easily express a wide
range of novel stream applications that require correctness
guarantees of stream processing (such as time order and
exactly-once semantics), as well as ACID guarantees; 2)
TPG-based Adaptive Scheduling: MorphStream is able
to flexibly morph among scheduling strategies, adapting to
dynamically changing workload characteristics. Guided by a
lightweight decision model, MorphStream can make the
correct scheduling decision at runtime with minor overheads;
3) High Performance: Compared to existing approaches, much
of the additional system overhead of MorphStream comes
from constructing and exploring the TPG concurrently and
correctly, considering that input events may arrive out-of-
order. To reduce TPG construction and exploration overhead,
MorphStream has a novel highly parallelized system
architecture, which ends up with a multi-times performance
improvement over the state-of-the-art.

II. PRELIMINARIES

In analogy to conventional transaction processing, TSP
guarantees ACID properties [7]. In addition, TSP needs
to further ensure stream processing properties such that
dependent state accesses strictly follow their timestamp
sequence [7], [8], [2], [4]. We define a state access operation



Adaptive Scheduling Strategy
O4

O1

O2 O5

TPG

Web GUI

App development Topology and TPG display Execution statistics

O6

O3 Dependency
resolution

Transaction
execution

MorphStream System

Job
Submission

Events
User
impl.
API

System
prov.
API

Programming APIs Construction of S-TPG Scheduling of S-TPG 

Txns
op1

op2

op4

 Executor

Fig. 1: The key components of MorphStream and its GUI.

as a read or write operation to shared state, denoted as
Oi = Readts(k) or Writets(k, v). Timestamp ts is defined
as the time of its triggering input event, while k denotes
the state to read or write, and v denotes the value to write.
The key k can be extracted from the input event [4], [2],
while v may depend on the value of a list of states, i.e., v =
f(k1, k2, ..., km), where f is a read-only user-defined function.
The set of state access operations triggered by the processing
of one input tuple is defined as one state transaction, denoted
as txnts = < O1, O2, ... On >. Subsequently, a schedule (S)
of state transactions txnt1, txnt2, ..., txntn is correct if it is
conflict equivalent to txnt1 ≺ txnt2 ≺ ... ≺ txntn, where ≺
means that the left operand precedes the right operand.

To sustain high input stream ingress rates, scaling TSP
is essential. Hence, a design goal of TSPEs is to maximize
system concurrency while maintaining a correct schedule.
However, it is a non-trivial challenge due to complex
inter- and intra-dependencies among state transactions. In the
following, we summarize three key dependencies among state
transactions.

• Temporal Dependency (TD): Oi temporally depends on
Oj if they are not from the same state transaction, but
they access the same state, and Oi has a larger timestamp.
Tracking TD enforces that state accesses follow the event
sequence.

• Parametric Dependency (PD): Oi = Write(ki, v),
where v = f(k1, k2, ..., km), parametrically depends on
Oj = Write(kj , v

′) if kj ̸= ki, kj ∈ k1, k2, ..., km,
and Oi has a larger timestamp. Tracking PD resolves the
potential conflicts among write operations due to user-
defined functions.

• Logical Dependency (LD): Oi and Oj logically depend
on each other if they belong to the same state transaction.
Tracking LD ensures that the aborting of one operation
leads to aborting all operations of the same state
transaction.

III. SYSTEM OVERVIEW

MorphStream is a novel TSPE, purposefully engineered
for impeccable performance on contemporary parallel
hardware, even amidst dynamically shifting and heavily
contested workloads. Figure 1 presents a schematic of
MorphStream’s framework and its GUI. Initiating

with the ’App Development’ phase, users craft stream
applications using user-centric and system-provided APIs,
modelled as Directed Acyclic Graphs (DAGs). The system’s
flexibility is highlighted by its blend of user-defined and
system-endorsed APIs, with atomic state access operations
encapsulated by system APIs. Central to MorphStream
is a stateful Task Precedence Graph (S-TPG). This graph,
with vertices representing state access tasks and edges
denoting dependencies, is foundational to MorphStream’s
scheduling. In its TPG-based scheduling, MorphStream
emphasizes transactional integrity in TSPEs. Strategies for
operation exploration, determining scheduling units, and
managing transactional aborts are evident in its execution
phase. Compared to peers, MorphStream consistently
demonstrates adaptability and superior performance across
varied workloads.

A. Programming APIs

In MorphStream, transactional stream applications are
depicted as a Directed Acyclic Graph (DAG), adhering to a
dataflow model. Within each vertex, MorphStream extends
both user-defined and system-integrated APIs to enhance the
transaction processing over streams. While users mould the
user-defined APIs to fit their specific application requirements,
the system-integrated APIs function akin to library procedures.
The user-implemented APIs require users to follow a three-
step procedure to implement the operations of an operator:
Firstly, preprocessing the input events to identify the read/write
sets of state transactions. Secondly, performing state access,
where all state accesses are expressed through system-provided
APIs using state transactions. Finally, post-processing is
conducted to further process the input events based on the
access results and generate corresponding outputs. The catalog
of system-integrated APIs encompasses operations such as
READ, WRITE, and READ MODIFY , symbolizing the
atomic actions of a state transaction. Within MorphStream,
a window operation [9] is characterized as either a read or
write task, further contextualized by a temporal range and
a designated trigger instant. Once an application is fully
sculpted, it is dispatched as a job to MorphStream, priming
it for the ensuing execution.

B. Construction of S-TPG

Central to MorphStream’s design is its advanced
capability to facilitate intricate three-dimensional scheduling
decisions promptly. This efficacy is achieved by distinctly
partitioning dependency resolution and execution into ‘stream
processing’ and ‘transaction processing’ phases. Such strategic
bifurcation not only enables MorphStream to efficiently
batch continuous state transactions but also grants the
flexibility to recalibrate its scheduling techniques in response
to the dynamic nature of the workload. For every batch of
state transactions, MorphStream constructs a stateful task
precedence graph (S-TPG), wherein vertices symbolize atomic
state access operations, and edges establish the dependencies
between them. Each vertex in the S-TPG is annotated with



a finite state machine that tracks the execution status of
the corresponding operation. The overall scheduling process
thus integrates the concurrent formation and three-dimensional
strategy considerations applied to the S-TPG.

Constructing the S-TPG with minimal overhead is
paramount. Yet, discerning the three dependency types (TDs,
LDs, PDs) among state access operations poses challenges,
especially when transactions arrive out-of-order. To mitigate
this, the S-TPG construction is divided into two phases:
a) Stream Processing Phase: This phase is focused on the
identification of dependencies within the same transaction. LDs
are recognized based on statement orders. For TDs, operations
are organized into key-partitioned lists, chronologically
ordered by timestamp and centered around each operation’s
target state. Additionally, “proxy operations” are maintained
for write operations to discern PDs; these are essentially
read operations aligned with the keys of the associated write
task. b) Transaction Processing Phase: Here, subsequent state
transactions are temporarily halted until the transition back to
the stream processing phase. Efficiently pinpointing TDs and
PDs becomes feasible at this juncture by iterating through the
chronologically ordered lists and the “proxy operations”. This
swift and accurate dependency identification, combined with
rapid S-TPG construction, empowers MorphStream to adapt
its scheduling tactics, aligning with the evolving workload
attributes of diverse state transaction batches.

C. Adaptive Scheduling based on S-TPG

In MorphStream, transaction scheduling efficacy depends
on managing three types of dependencies via the S-TPG.
For each batch of state transactions, the process starts
with initializing the S-TPG, establishing the framework of
operations and dependencies. Execution then unfolds through
two exploratory paths: a structured approach employing
depth-first or breadth-first search-like traversals for systematic
exploration, or an unstructured approach via random traversal,
offering adaptability. Concurrently, threads decide on the
scheduling granularity, choosing between single operation or
group scheduling to strike a balance between dependency
resolution overhead and scheduling scalability. In cases of
transaction abort, MorphStream adopts varied strategies,
ranging from eager aborts for swift termination of failing
operations to lazy aborts for deferred handling. These
strategies are dynamically selected and fine-tuned in response
to operational outcomes and overall system performance.

To evaluate MorphStream, we compare its performance
against two state-of-the-art TSPEs: S-Store [2] and
TStream [4]. We use Streaming Ledger [5] (SL) as
the base application and divide the workloads into four
phases. The first three phases evaluate MorphStream’s
adaptability to varying workload characteristics, such as
deposit transaction density, key skewness, and transfer
transaction ratios. For example, in Phase 1, MorphStream
leverages an adaptive scheduling algorithm to yield up to
1.27x higher throughput than the closest competitor. As
workloads change, MorphStream dynamically adjusts

MorphStream TStream S-Store

0

200

400

600

Phase

Th
ro
ug
hp
ut
(k
/s
ec
)

Phase2 Phase3 Phase4Phase1

DDDDD
100
110
120
130
140
150
160

PhasePhase3

(a) Throughput

0 2000 4000 6000 8000
0

20

40

60

80

100

Latency(ms)

C
um

ul
at

iv
e 

Pe
rc

en
t(%

)

(b) Latency

Fig. 2: Evaluation on Dynamic Workload.

its scheduling strategy, such as shifting from a structured
approach to an unstructured approach, to effectively resolve
dependencies and maintain high performance. In the fourth
experimental phase, we focus on MorphStream’s resilience
to an increasing ratio of aborting transactions. While the
performance of TStream deteriorates due to redo overhead,
MorphStream adopts an abort mechanism that evolves in
response to changing abort rates, resulting in a throughput
2.2x to 3.4x higher than other systems. Additionally, unlike
S-Store and TStream, whose performance declines under
changing workloads, MorphStream’s adaptive scheduling
minimizes tail latency by dynamically optimizing for varied
workload characteristics.

IV. DEMONSTRATION SCENARIOS

We will demonstrate the key features of MorphStream
by using SL as an example. The demonstration will be
segmented into three critical parts, each focusing on distinct
functionalities provided by the MorphStream’s GUI.

A. Application Development and Deployment

MorphStream’s GUI offers an efficient environment
for stream application development. A frontend code editor
is designed for ease in implementing transactional stream
processing applications as shown in Figure 3. With built-
in syntax highlighting, auto-suggestions, and integrated
MorphStream’s client-side API documentation, the user
can easily define customized streaming applications with
transactional guarantees. This hands-on interface ensures
participants gain both theoretical insight and practical
proficiency in using MorphStream for high-performance
stream processing. The submitted code will be subsequently
compiled as a new streaming job deployed in MorphStream.

Fig. 3: App development & deployment in MorphStream.



B. Display of Topology and TPG

Figure 4 showcases the GUI’s display of application
topology and S-TPG. The application topology consists of
all operators integral to the stream-oriented functionalities
of MorphStream. The S-TPG, as the key component
that participates in MorphStream’s adaptive scheduling
process, visualizes the fine-grained transactional dependencies
among state access operations. Each node represents one
state access, and three types of dependencies (TD, LD, and
PD) are visualized as color-coded edges for clarity. Detailed
state access information for each operation is revealed upon
hovering over it with the cursor. Adjacent to the S-TPG, the
lower right section provides aggregated numbers and ratios of
TD, LD, and PD on the current S-TPG. These statistics offer
users valuable insights into the heuristic-based decision model
that governs MorphStream’s adaptive scheduling, aiding in
performance optimization or troubleshooting.

       TPG

  Txn ID: 3656_1 
  Txn Type: Write 
  Table: "accounts" 
  Key: "3928"

Spout SL Sink

TD LD PD

TD LD PD

N
um

be
r

TD LD PD

400

200

    0

Fig. 4: Display of Application Topology and TPG statistics.

C. Display of Runtime Execution Statistics

We highlight the GUI’s ability to display runtime
execution statistics in Figure 5. The interface dynamically
presents MorphStream’s throughput and latency for
each batch, enabling users to make instant performance-
enhancing adjustments. Furthermore, the GUI offers a granular
breakdown of execution durations for each input batch,
segmented into: 1) Useful Time, reserved for the actual
time spent in transaction execution, 2) Construction Time,
designated for S-TPG creation, 3) Exploration Time, allocated
for exploring the optimal transactional scheduling strategy,
and 4) Abort Time, consumed during transaction abort
handling. These fine-grained metrics furnish a clear view of
MorphStream’s execution efficiency, proving invaluable for
troubleshooting and performance optimization. Additionally,
the interface summarizes comprehensive statistics for every
batch of input events, detailing metrics such as the statistical
summary of event processing latency, overall throughput, and
the chosen scheduling strategy. Runtime statistics of different
input batches are dynamically updated in the GUI, and users
can also review the historical performance data of any previous
batches.

140

120

100

  80

  60

  40

  20

    0

Throughput: 92.3K (tuple/s) 
Latency: 9.1 (ms) Useful

Time

Construct
Time

Explore
time

25 30 35 40 45 50 55

 Batch ID

 Batch Size

 Duration

 Avg Latency

 Throughput

 Scheduler

 Min Latency

 Max Latency

 Batch ID

  1600

  8.2 ms

  9.1 ms

  13.7 ms

  17.3 ms

  92.3 K tuple/s

35

OP_NS_A

Fig. 5: Display of Runtime Statistics.

V. SUMMARY

None of the existing TSPEs can maximize performance
under different and dynamically changing workload
characteristics, which limits their practicality. In this
demonstration, we aim to show that MorphStream can
achieve scalable processing of transactions over streams. We
plan to showcase MorphStream’s ability to dynamically
adjust its scheduling strategy by exploring the three scheduling
dimensions based on the analysis of decision trade-offs under
different workload characteristics. Additionally, this approach
results in better overall performance than using a single
scheduling strategy. The audience will have the opportunity to
interact with MorphStream and gain a better understanding
of how to use it, its unique features, and its performance.

ACKNOWLEDGEMENT

This work is supported by a MoE AcRF Tier 2 grant
(MOE-T2EP20122-0010), the National Research Foundation,
Singapore and Infocomm Media Development Authority
under its Future Communications Research & Development
Programme FCP-SUTD-RG-2022-005 & FCP-SUTD-RG-
2022-006 and a startup grant of NTU (023452-00001).
Corresponding author is Shuhao Zhang.

REFERENCES

[1] S. Zhang, J. Soto, and V. Markl, “A survey on transactional stream
processing,” The VLDB Journal, Sep 2023.

[2] J. Meehan, N. Tatbul, and et al., “S-store: Streaming meets transaction
processing,” Proc. VLDB Endow., sep 2015.

[3] L. Affetti, A. Margara, and G. Cugola, “Tspoon: Transactions on a stream
processor,” JPDC, vol. 140, pp. 65–79, 2020.

[4] S. Zhang, Y. Wu, and et al., “Towards concurrent stateful stream
processing on multicore processors,” in ICDE, 2020.

[5] S. A. Transactions and S. Data, “Data Artisans Streaming Ledger
Serializable ACID Transactions on Streaming Data, https://www.
da-platform.com/streaming-ledger,” 2018.

[6] Y. Mao, J. Zhao, and et al., “Morphstream: Adaptive scheduling for
scalable transactional stream processing on multicores,” in SIGMOD,
2023.

[7] L. Affetti, A. Margara, and G. Cugola, “Flowdb: Integrating stream
processing and consistent state management,” in DEBS, 2017.

[8] U. Cetintemel, J. Du, and et al., “S-store: A streaming newsql system for
big velocity applications,” Proc. VLDB Endow. 2014.

[9] L. Golab, K. G. Bijay, and M. T. Özsu, “On concurrency control in sliding
window queries over data streams,” in EDBT, 2006.


