
Parallelizing Stream Compression for IoT
Applications on Asymmetric Multicores

Xianzhi Zeng
ISTD Pillar

Singapore University of Technology and Design
Singapore, Singapore

xianzhi zeng@sutd.edu.sg

Shuhao Zhang
ISTD Pillar

Singapore University of Technology and Design
Singapore, Singapore

shuhao zhang@sutd.edu.sg

Abstract—Data stream compression attracts much attention
recently due to the rise of IoT applications. Thanks to
the balanced computational power and energy consumption,
asymmetric multicores are widely used in IoT devices. This
paper introduces CStream, a novel framework for parallelizing
stream compression on asymmetric multicores to minimize energy
consumption without violating the user-specified compressing
latency constraint. Existing works cannot effectively utilize
asymmetric multicores for stream compression, primarily due
to the non-trivial asymmetric computation and asymmetric
communication effects. To this end, CStream is developed with the
following two novel designs: 1) fine-grained decomposition, which
decomposes a stream compression procedure into multiple fine-
grained tasks to better expose the task-core affinities under the
asymmetric computation effects; and 2) asymmetry-aware task
scheduling, which schedules the decomposed tasks based on a
novel cost model to exploit the exposed task-core affinities while
considering asymmetric communication effects. To validate our
proposal, we evaluate CStream with five competing mechanisms
of parallelizing stream compression algorithms on a recent
asymmetric multicore processor. Our extensive experiments
based on a benchmark consisting of three algorithms and four
datasets show that CStream outperforms alternative approaches
by up to 53% lower energy consumption without compressing
latency constraint violation.

Index Terms—Stream compression, Edge Computing and IoT,
Asymmetric Hardware

I. INTRODUCTION

Data stream compression, i.e., continuously compressing
data attracts much attention recently [1], [2], [3], [4], [5],
[6], [7], due to the rise of IoT applications [8], [9]. Figure 1
demonstrates a smart city use case [10], [11], [12] where
stream compression is a highly attractive technique. In
this application, real-time data streams (e.g., air qualities,
wind speeds) from sensors are continuously gathered by
the memory-limited, battery-powered patrol drones (i.e., IoT
devices). The drone may continuously compress gathered data
streams before uploading to the cloud center to reduce data
transmission overhead. However, adopting compression does
not guarantee “plug-and-play” performance benefits due to
the additional compressing latency and hardware resource
constraints such as the battery capacity of IoT devices.

According to a 2018 survey [13], modern ARM machines
with asymmetric multicores are typical choices for IoT
devices [13]. The key to asymmetric multicores is to couple

Temperature

Humidity

Toxic gas

Wind speed

Data stream
Compressed data

stream

IoT device

Stream compression

Cloud center

Fig. 1: Real-time data gathering and stream compression at
the patrol drone.

relatively energy-saving and slower cores (i.e., ‘little cores’)
and relatively more powerful and power-hungry cores (i.e.,
‘big cores’) under the same Instruction Set Architecture (ISA).
For instance, an ARM rk3399 processor can be composed with
both the in-order A53 ‘little cores’ [14] and the out-of-order
A72 [15] ‘big cores’. Such a novel asymmetric architecture
balances computational power and energy consumption but
brings non-trivial asymmetric computation and asymmetric
communication effects. The asymmetric computation effect
stands for that the computational power of ‘big cores’
is greater than that of ‘little cores’, and the asymmetric
communication effect stands for that the communication
latency from ‘big cores’ to ‘little cores’ is larger than the
reverse direction.

In this paper, we propose CStream, a novel framework
of parallelizing stream compression for IoT applications.
Different from file compression or database compression
where all data to be compressed are readily presented,
stream compression is an incremental procedure of handling
continuously arriving data streams. Specifically, a data stream
is a list of tuples chronologically arriving at the system, and
each tuple needs to be compressed with low latency. When
stream compression is conducted in IoT devices, such as in the
example in Figure 1, energy consumption is another important
factor to be considered. Based on asymmetric multicores,
CStream parallelizes a stream compression algorithm to
compress data streams, such that it minimizes energy
consumption while satisfying a user-specified compressing
latency constraint.

Our work is linked to the literature on both parallel data
compression algorithms [16], [17], [18], [19], [20], [21], [22],
[23] and workload scheduling on asymmetric multicores [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33]. They provide
highly valuable techniques and mechanisms, but none of them
is able to answer the question of “how to achieve energy
efficient and low latency stream compression on asymmetric
multicores”. Compared to existing works, the superiority of
CStream is achieved from two novel designs: fine-grained
decomposition and asymmetry-aware task scheduling.

First, CStream decomposes the entire stream compression
procedure (i.e., running of a stream compression algorithm
on a batch of data stream, Definition 1) into fine-grained
tasks with different operational intensity (i.e., instructions per
memory access) [34], [24], [35], [36]. Tasks with higher (resp.
lower) operational intensity prefer ‘big cores’ (resp. ‘little
cores’). Such an approach better exposes task-core affinity
and offers opportunities for better utilization of asymmetric
multicores compared to existing mechanisms [35], [33], [32].

Second, CStream schedules the decomposed fine-grained
tasks on asymmetric multicores according to their exposed
task-core affinity. The involved asymmetric communication
overheads require one to carefully align the communication
pattern among tasks. To this end, we propose a novel cost
model to guide the scheduling by considering both task-core
affinity and asymmetric communication effects. Specifically,
our model accurately predicts both the energy consumption
and compressing latency of each decomposed task given a
scheduling plan (Definition 2). Based on the model, CStream
searches for the optimal scheduling plan by enumerating all
possible plans with dynamic programming.

For a comprehensive comparison, we have implemented
and evaluated the parallelization of three representative stream
compression algorithms in CStream based on a recent ARM
processor rk3399 with asymmetric multicores. The evaluation
based on both real-world and synthetic datasets confirm
the superiority of CStream. In particular, it outperforms
the alternative mechanisms [35], [37] by up to 53% more
energy consumption reduction without violating the strict
compressing latency constraints of 11 ∼ 26 microseconds for
compressing each byte of data stream under varying workload
characteristics. In summary, this paper makes the following
contributions.
• We develop CStream, a novel framework for parallelizing

various stream compression algorithms on asymmetric
multicores to minimize energy consumption while ensuring
the compressing latency is within a user-defined constraint.
All of our code, data, and scripts can be found at https:
//github.com/intellistream/CStream. The design overview
of CStream is presented in Section III.

• We propose a fine-grained decomposition mechanism
(Section IV) to decompose a stream compression
procedure into fine-grained tasks based on the compression
behavior (i.e., varying operational intensity) of a stream
compression algorithm. This allows CStream to better
expose task-core affinities on asymmetric multicores.

TABLE I: Summary of terminologies
Type Notation Description

Workload
Specifications

B The size of batch of data stream to compress
Lset User specified compressing latency constraint

Device
Specifications

& Roofline
Model

j A specific AMP core

Cj
Maximum executable instructions within
unit time of core j

Lcomm
j′,j

Worst unit communication latency from
core j′ to j

Model
Outputs

Lest Estimated compressing latency
Eest Estimated total energy consumption

Cost
Model
Terms

ti
Task i decomposed from a stream
compression job

p A possible scheduling plan
popt The optimal scheduling plan
ii Input data size of ti
ei Energy consumption of ti
li Compressing latency of ti
lcomp
i Computation latency of ti
lcomm
i Communication latency of ti
ηi Instructions per unit time of ti
ζi Instructions per unit energy of ti

κi
Instructions per unit memory access (i.e.,
operational intensity) of ti

• We propose an asymmetry-aware task scheduling
mechanism (Section V), which schedules the decomposed
tasks on asymmetric multicores based on a novel cost
model to exploit the exposed task-core affinities while
taking asymmetry communication effects into account.

• To the best of our knowledge, this work is also the
first comprehensive study to compare various competing
mechanisms to parallelize stream compression algorithms
on asymmetric multicores using both real-world and
synthetic datasets (Section VI and Section VII).

II. PRELIMINARIES

In this section, we give a preliminary background of stream
compression for IoT applications, followed by reviewing
the asymmetric multicore architecture. We summarize the
terminologies used in our work in Table I.

A. Data Stream Compression for IoT

A data stream is a list of tuples chronologically arriving at
the system. Each tuple represents an event including timestamp
and payloads. Data stream compression is an incremental
procedure to compress continuously arriving data streams with
low latency. It can be conducted solely based on the current
tuple (i.e., that arrives most recently) or additionally based
on the past tuples (i.e., those arrive earlier than the current
tuple). We classify the former as stateless stream compression,
which ignores the past tuples, and the latter as stateful stream
compression, which utilizes a state (e,g., a dictionary [38]) to
keep the information of past tuples.

Our work aims to provide framework-level support to
optimize stream compression (including stateless and stateful)
for IoT applications [9]. In particular, CStream parallelizes
each stream compression procedure on asymmetric multicores,
defined as follows.

Definition 1 (Stream Compression Procedure). A stream
compression procedure is the process of executing a stream

https://github.com/intellistream/CStream
https://github.com/intellistream/CStream

compression algorithm (stateless or stateful) on a batch of data
streams, where the batch size (B) is tunable. In this work, we
assume B is pre-determined by applications. To simplify the
presentation, we use a pair of Algorithm-Dataset to describe
a stream compression procedure in the following.

Note that, the compressibility of a specific compression
algorithm is not a concern of this work. Instead, we focus
on the following two strict design requirements for adopting
stream compression for IoT applications.
Design Requirements of Stream Compression for IoT:

• (R1) Low Latency Stream Compression: Data streams
generated from the IoT applications are often real-time
constrained, requiring a low latency compressing to meet
the quality-of-service (QoS) goal [39], [35].

• (R2) Low Energy Consumption: Stream compression
for IoT needs to achieve low energy consumption as the
available energy budget for IoT devices is often quite
limited compared with that in a data center [8]. For
instance, the devices may be solar or battery-powered
and far away from a constant power source.

B. Asymmetric Multicore Architecture

The asymmetric multicore architecture is designed to
balance computational power and energy consumption [40],
[41], [34], and is increasingly deployed for IoT devices [9],
especially due to the worldwide rising concern for energy
consumption and carbon emissions [42], [43], [44]. Figure 2
depicts a recent 6-core rk3399 processor [45], which couples
different types of cores (A53 and A72) on the same chip. Such
architecture is also often called “big-Little” architecture.

Compared to conventional symmetric multicores,
asymmetric multicores involve two non-trivial asymmetry
effects: 1) Asymmetric Computation Effect. As shown in
Figure 2, four A53 cores (i.e., Core0 ∼ Core3) and two
A72 cores (i.e., Core4 ∼ Core5) are coupled in one chip.
Although they share the same ISA (i.e., ARM V8), the A53
cores (‘little cores’) are in-order, relatively battery-saving and
slower. In contrast, the A72 cores (‘big cores’) are out-of-
order, power-hungry and more powerful; and 2) Asymmetric
Communication Effect. A53 cores and A72 cores are placed
in different clusters (Cluster0 ∼ Cluster1) resulting in
different types of cross-core communication patterns [46],
[47], i.e., inter-cluster and intra-cluster communication.
The inter-cluster communication needs to go through a
slow CCI500 interconnection channel, while intra-cluster
communication involves L2 cache only.

III. MOTIVATION AND DESIGN OVERVIEW

In this section, we present the motivation for the design of
our proposed framework – CStream for stream compression on
asymmetric multicores, followed by its design overview. The
detailed implementation of task decomposition and scheduling
with a cost model are presented in Sections IV and V,
respectively.

512K L2

Cluster 0

1M L2

Cluster 1

CCI500 inter connection

Memory

Core0:
A53

Core4:
A72

Core5:
A72

c0

c0 c0

c2

Core1:
A53

Core2:
A53

Core3:
A53

c0

c0c0

c1

Fig. 2: The 6-core rk3399 processor.

102 103

operational intensity ()
0

2000

4000

/×
10

6

read
(= 25)

encode
(= 340)

write
(= 102)

{1} {2} {3} {4}

big core little core

Fig. 3: The four-segment roofline model of asymmetric
multicores rk3399. Dashed lines denote the κ of different
stream compression steps.

A. Motivations

Parallelizing stream compression on asymmetric multicores
can potentially satisfy the aforementioned two design
requirements of adopting stream compression for IoT
applications. However, the involved asymmetry effects require
a careful system design. A poor design can incur both
severe compressing latency constraint violation and energy
dissipation. It is a particular challenge to support varying
stream compression algorithms (e.g., stateless and stateful
compression), varying datasets, and varying compressing
latency constraints. Our design of CStream is motivated by
the following observations.

Observation 1: there are varying task-core affinities in
different parts of a stream compression procedure. The roofline
model [48], [49] reveals that the instructions per unit time
(η) or energy (ζ) on hardware grows with the operational
intensity (i.e., instructions per memory access, denoted as κ)
of software, before reaching a maximum value (i.e., the so-
called “roof”). By taking the tcomp32 algorithm [50] as an
example, we show the roofline model of a ‘big core’ and a
‘little core’ on the rk3399 asymmetric multicores. The roofline
profiling is done by adopting a benchmark by Lo et al. [51]. A
stream compression procedure is generally composed of three
steps (read, encode, and write) with different κ. We mark
the κ of each stream compression step as dashed vertical lines
in Figure 3. There are two key takeaways. First, the roofline
model on asymmetric multicores is more complex than the

TABLE II: Bandwidth and latency of cross-core
communication in rk3399

Path Bandwidth Latency
intra-cluster c0 2.7 GB/s 70.4 ns
inter-cluster c1 0.7 GB/s 142.4 ns
inter-cluster c2 0.4 GB/s 420.8 ns

original and common assumption of “linear growth” [48].
Specifically, there are four distinct segments marked as {1} ∼
{4} for the rooflines on ‘big core’ and ‘little core’, separated
by the dotted vertical line. Each segment involves different
levels of κ, putting different pressure on the L1 and L2 cache
and thus leads to different κ− η relationships. In particular, η
even decreases with increasing κ from 30 to 70 (i.e., the {2}
segment) on ‘little core’. We observe that this is primarily
due to the increasing L1-I cache misses. As the ‘little core’
is an in-order processor, it stalls until instructions become
available, severely affecting its performance. Second, we can
see that when κ is larger than 25, it is more and more cost-
effective (i.e., leads to more performance gain) to run tasks on
‘big cores’. Consequently, different steps of the same stream
compression procedure should be scheduled independently as
they may be better scheduled to different cores due to their
different κ as shown in the figure.

Observation 2: there are large differences in communication
costs among asymmetric cores. To exploit task-core affinities,
decomposed tasks may be scheduled to different cores.
Therefore, different core communication paths (i.e., c0, c1,
and c2 in Figure 2) may be involved. They have large
differences in terms of bandwidth and latency as illustrated
in Table II, measured by the STREAM benchmark [52].
The intra-cluster communication has much higher bandwidth
and lower latency than inter-cluster communication, due to
the slower CCI500 interconnection. More interestingly, inter-
cluster communications of different directions (i.e., c1 and
c2) are not involving the same cost. This is because of
the additional synchronization and hand-shaking cycles [53]
when sending data from little cores to big cores. Those
asymmetric communication effects make the exploiting of
task-core affinities a non-trivial quest.

In summary, these observations challenge existing
schemes for parallelizing stream compression on asymmetric
multicores: First, existing mechanisms [35], [33], [32]
consider the coarse-grained scheduling and do not expose
the fine-grained task-core affinities in the workload. Second,
previous studies on utilizing asymmetric multicores [47], [46]
surprisingly overlook the different costs of c1 and c2, which
is important to consider when scheduling decomposed tasks
from a stream compression procedure that involves heavy
inter-task communications.

B. Design Overview of CStream

Figure 4 depicts the overall workflow of CStream. First,
CStream applies fine-grained decomposition of a stream
compression procedure driven by the operational intensities
of compression steps (e.g., read, encode, and write) to

better expose task-core affinities. The decomposition results in
several tasks, which can run independently and communicate
with each other via message passing. For instance, one
task may just conduct the encode step and emit the results
to downstream tasks. To increase concurrency, a task may
be further replicated to multiple replicas (e.g., t0 and t1)
handling subsets of data streams. Second, the decomposed
tasks are scheduled to asymmetric multicores to minimize total
energy consumption (E) without violation of user-specified
compressing latency constraint (Lset), guided by a novel cost
model. The cost model estimates both energy consumption
(ei) and compressing latency (li) of each task: 1) the ei is
estimated by the operational intensity (κi) of each task, and
2) the li is the summation of computation latency (lcomp

i) and
communication latency (lcomm

i) of each task ti. In particular,
lcomm
i varies depending on where the task and its upstream

tasks are scheduled. For instance, in the example scheduling
plan shown in Figure 4, t2 needs to fetch data from t0 and t1
via the slow CCI500 interconnection channel.

IV. FINE-GRAINED DECOMPOSITION

In this section, we discuss the fine-grained decomposition
of a stream compression procedure in detail.

A. Stream Compression Procedure Templates

We generally classify existing stream compression
algorithms into stateless and stateful categories depending
on whether they utilize states. CStream supports the
parallelization of both stateless and stateful algorithms on
asymmetric multicores. In the following, we illustrate the code
template of both types of stream compression algorithms.
We leave the detailed steps of concrete algorithms used as
examples in this work in a technical report [54].

Stateless Stream Compression. Algorithm 1 depicts the
high-level idea of how stateless stream compression (e.g.,
tcomp32 algorithm [50]) works. It involves three steps for
every batch of data streams: s0, s1, and s2. First, it reads
a batch of tuples in step s0 before compressing. This step
is mostly about memory copy, so it has low operational
intensity. Second, it encodes each tuple in s1 by finding its
compressible parts. This step typically involves arithmetic and
logical operations in searching compressibility and therefore
leads to higher operational intensity than s0. Third, it writes
the compressed data to the output stream in s2 according to
what s1 has encoded. This step involves both integer/float
operation and memory access, and typically has a middle level
of operational intensity compared with s0 and s1.

Stateful Stream Compression. Algorithm 2 depicts the
high-level idea of how a stateful stream compression algorithm
works (e.g., lz4 algorithm [55]). It involves five steps as s0
∼ s4. The read (i.e., s0) and write (i.e., s4) steps are the
same as those in a stateless compression algorithm. In contrast,
the encode step is now based on state, and can be further
partitioned into three steps: s1 ∼ s3. First, it preprocesses
some values before accessing the state (such as an index of a
dictionary [55]) in s1. Second, it updates the state in-cache (or

A stream compression
algorithm:

（e.g., read, encode, write)

read, encode

writeA batch
of data
stream

A stream compression procedure

Fine-grained decomposition

read, encode...
... read, encode

write

Asymmetry-aware scheduling

read, encode

Core 0

Core 1

Core 4

output

CStream Framework

...
...

A batch of
compressed
data stream

Fig. 4: The workflow of CStream. Using a stateless stream compression procedure as an example.

Algorithm 1: Stateless stream compression
Input: input stream inData
Output: output stream outData

1 while inData is not stopped do
2 (s0) read the tuples from inData ;
3 (s1) encode by finding the compressible parts;
4 (s2) write compressed data to outData ;
5 end

Algorithm 2: Stateful stream compression
Input: input stream inData
Output: output stream outData

1 while inData is not stopped do
2 (s0) read the tuples from inData ;
3 (s1) preprocess ;
4 (s2) state update ;
5 (s3) state-based encoding;
6 (s4) write compressed data to outData ;
7 end

in-memory) in s2 with 1) the current tuple and 2) s1-produced
value. Third, it finally achieves encoding by state reference in
s3. Due to the state write or read, s2 and s3 lead to lower
operational intensity than s1.

B. Parallelizing Stream Compression Procedures

CStream explores both pipelining and data parallelism for
parallelizing a stream compression procedure as follows.

Exploring Pipelining Parallelism. First, CStream achieves
pipelining parallelism by executing the aforementioned stream
compression steps (Section IV-A) in a pipeline fashion.
Specifically, each step in Algorithsm 1 and 2 can run
concurrently as an independent task. In this way, their varying
operational intensity is exposed for further exploitation. When
communication latency (lcomm

i) of a task ti is greater than
the computation latency (lcomp

i) of this task or that (lcomp
i′) of

its upstream task (t′i), we fuse the tasks ti and ti′ to reduce
communication overheads. For example, read (s0) and encode
(s1) are fused, while write (s2) runs separately as shown in
Figure 4.

Exploring Data Parallelism. Second, when compressing
latency constraints Lset is unable to meet through pipelining
solely, we can replicate tasks to further explore data

parallelism. We follow topologically sorted iterative scaling
optimization [56] to replicate the bottleneck task. For each
iteration, the bottleneck task ti with the highest compressing
latency li is replicated. Task replication iteration ends when
compressing latency constraints can be met or hardware
resources are saturated. We discuss the estimation of li to
identify bottleneck tasks under varying scheduling plans in
the next section.

The replication of all steps of both types of algorithms
is straightforward, except s2 of Algorithm 2, as it requires
the manipulation of states. We let each thread maintain its
own state to avoid concurrent access conflicts during stream
processing [57]. Compared to sharing states with locks, this
approach leads to a slight reduction in compressibility (0.03
lower compression ratio [1], [58]), but significantly lower
(51%) energy consumption and lower (82%) compressing
latency. More details can be found in our report [54].

V. ASYMMETRY-AWARE SCHEDULING

In this section, we introduce how CStream decides the
optimal scheduling plan with the guidance of a novel cost
model. We first give formal definitions of the scheduling
problem, then illustrate the design of the cost model, followed
by the procedures of model-guided task scheduling.

A. Problem Formulation

The goal of our scheduling is to minimize energy
consumption while ensuring the user-specified compressing
latency constraint in parallelizing stream compression on
asymmetric multicores. Specifically, we define a scheduling
plan as follows.

Definition 2 (Scheduling Plan). A scheduling plan is for
mapping each decomposed task ti to a specific core of
asymmetric multicores. Given n tasks decomposed (i.e.,
{t0, .., ti, ..., tn−1}), there is an n-element array p =
{j0, ..., ji, ..., jn−1} to describe a scheduling plan and ji is
the specific core of ti to be mapped.

We look for the optimal scheduling plan popt for a
given stream compression procedure. The problem can be
mathematically formulated as Equation 1∼3.

minimize(Eest =
∑
i

ei) (1)

s.t., ∀ti∀j,
Lset ≥ Lest = max(li) = max(lcomp

i + lcomm
i), (2)

Cj ≥
∑

ti at core j

ηi (3)

We refer to the energy consumption of each task ti using
the symbol ei, and its compressing latency as li. Minimizing
total energy consumption (Eest =

∑
i ei) in Equation 1

is the major reason for adopting asymmetric multicores in
IoT. As the formulas show, we consider two categories of
constraints that the optimization algorithm needs to make
sure the scheduling plan satisfies. Constraint in Equation 2
enforces that compression latency should never exceed the
user-specified constraint, due to real-time restrictions in stream
analysis [8]. Due to the pipeline execution, the estimated
compressing latency Lest is constrained by the maximum
latency of each task, i.e., Lest = max(li). The li can
be further decomposed into computation latency (lcomp

i)
and communication latency (lcomm

i) as li = lcomp
i +

lcomm
i . Constraint in Equation 3 enforces that the aggregated

demand of instructions requested to any core (
∑

ti at core j ηi)
must be smaller than its computation capacity (Cj). Task
oversubscription has been studied in previous work [59], and
is not the focus of this paper.

B. Cost Model

Our model estimates the energy consumption (ei),
instructions per unit time and energy (ηi and ζi, respectively),
and compressing latency (li) of each task.

1) Estimation of ei: The estimation of ei is non-trivial
as various properties of data and algorithms are involved.
As shown in Equation 4, we estimate ei as a proportional
relationship to the instructions per unit time (ηi) and the
latency (li), and an inverse proportional relationship to the
instructions per unit energy (ζi).

ei =
ηi × li
ζi

(4)

2) Estimation of ηi and ζi: The instructions of unit time
(ηi) is an intrinsic property of the asymmetric multicores.
According to observations in Section III-A (especially the
Figure 3), we use operational intensity (κi) to estimate
ηi, by refining and formulating the aforementioned roofline
graph [48]. Specifically, we estimate ηi as a four-region
piece-wise linear function to κi, with L1 and L2 cache-
awareness [60] for better modeling on asymmetric multicores,
as shown in Equation 5.

Profiling of κi: Due to the single ISA property of
asymmetric multicores, the operational intensity (κi) of each
task ti is not changing under varying scheduling plans. By
definition, κi is related to the number of instructions and
memory accesses of ti. We feed each task ti with a moderate

size of data (which is large enough to prevent randomness
and also within the memory capacity), and then profile the
total number of instructions with perf [61]. The memory
access is statically analyzed by the specific step of the stream
compression algorithm.

Estimation of ηi: We can estimate ηi by using κi in
Equation 5, and there are four segments as shown previously
in Figure 3. First, when κi is low and does not put significant
pressure on L1D (i.e., within the first boundary κL1), ηi
grows relatively fast with a growth rate aL1 and intercept
bL1. Second, condition κL1 < κi <= κL2 means a higher
κi that increases L1D missing and has significant impacts
on the core. In this case, ηi grows slower with growth rate
aL2 and intercept bL2. Third, with κi increasing into κL2 <
κi <= κroof , the L2 missing has major effects and therefore
changes the aL2 and bL2 into aExceedL2 and bExceedL2,
respectively. Fourth, after κi reaches the last boundary κroof ,
the ηi stays at the maximum value ηmax instead of increasing
with κi. When running on a certain core j, ηmax is equal
to its computational capacity (Cj). The specific value of the
aforementioned parameters varies in ‘big cores‘ and ‘little
cores’ due to asymmetric computation effects, and we can
use piece-wise linear fitting [62], [63] on the list of κ and its
resulting η to acquire them.

ηi =

κi ∗ aL1 + bL1 , κi <= κL1

κi ∗ aL2 + bL2 , κL1 < κi <= κL2

κi ∗ aExceedL2 + bExceedL2 , κL2 < κi <= κroof

ηmax , κi > κroof

(5)

Estimation of ζi: Another intrinsic property of asymmetric
multicores, i.e., instructions of unit energy consumption (ζi)
can also be estimated in a piece-wise linear form like
Equation 5. Typically, the estimation of ζi involves different
parameter values including the boundary of regions (i.e., κL1

and κL2), the growth rate (i.e., a), and the intercept (i.e., b).
3) Estimation of li: The compression latency (li) of a task

ti is the sum of two non-overlapping components lcomm
i and

lcomp
i .

Estimation of lcomp
i : We use lcomp

i to denote the general
computation time spent for executing the task ti. For tasks
that have a constant workload characteristic, it is simply
determined by the input size (i.e., ii), and the mapped core ji.
As a result, Equation 6 depicts the simple linear relationship
used to estimate it, with a system overhead ωji of the mapped
core ji and a growth rate λ that are constant.

lcomp
i = λ× ii + ωji , (6)

lcomp
i (under both big core and little core) can be acquired

by a dry-run profiling. We can also use machine learning
techniques (e.g., logistic regression) to train a prediction model
to predict lcomp

i .
Estimation of lcomm

i : Task ti involves communication delay
lcomm
i to fetch the data from its upstream task tu. lcomm

i is

determined by the fetched data size (i.e., the ii) and the relative
distance to upstream task tu. If a scheduling plan p maps ti
and tu respectively at core ji and ju, lcomm

i can be estimated
by Equation 7.

lcomm
i =

{
0, if ji = j′i
ii×Lcomm

j
i′ ,ji

cache line size + ωji′ ,ji , otherwise

, where ji and ji′ are determined by p. (7)

When task ti is collocated with its upstream ti′ , or ti
is just at the beginning step (i.e., read), the communication
latency lcomm

i is 0. Otherwise, it experiences the cross-core
(ji ̸= ji′) communication as discussed in Section III-A.
Formula 7 estimates the communication latency based on the
total size of data to be transferred (ii), cache line size, static
overhead (ωji′ ,ji) between core ji and ji′ , and the worst unit
communication latency (Lcomm

ji′ ,jj
) between core ji and ji′ . It

is worth noting that Lcomm
ji′ ,jj

̸= Lcomm
ji,jj′

and ωji′ ,jj ̸= ωji,jj′

if core ji and ji′ are located in different clusters, due to the
previous observations from Table II. For each possible ji and
ji′ , their Lcomm

ji′ ,ji
and ωji′ ,ji can be dry-run measured by setting

up a producer thread at ji′ and a consumer thread at ji. Note
that, the accurate estimation of lcomm

i is difficult as the ii
may vary depending on the compressibility. In this work, we
assume that ii does not vary much in a short period of time,
given the same dataset and the same compression algorithm.

C. Model-guided Scheduling

We search popt by enumerating all possible plans with
the cost model. We adopt dynamic programming [64] to
speed up the plan searching as different plans may overlap
for the scheduling of subsets of tasks. For each plan penum
enumerated, we first predict the compressing latency (li) and
instruction per unit time (ηi) on all of its tasks (ti), according
to Equations 5 ∼ 6, and then check whether constraints in
Equations 2 and 3 are met. If so, we continue to predict
energy consumption(ei) of all ti by Equation 4 and get the total
estimated energy consumption Eest of penum; if not, we just
ignore penum and continue the search. The plan with minimal
Eest and meet all constraints is popt.

D. Adaptive to Dynamic Environment

Our model is initially instantiated with a small number
of input data (10 ∼ 100 batches). However, data stream
characteristics, such as data size and entropy, can vary over
time, and CStream needs to be re-optimized in response to
workload changes. To adapt to dynamic scenarios, we adopt
a feedback-based regulation [65] in CStream. Specifically,
we periodically (i.e., every 50 ms) measure the compressing
latency and its predicted value. If the difference is larger
than a threshold, we collect the subsequent batches of data to
calibrate the cost model. We base our model calibration on PID
control [66], [67], [68], which is the most common form of
feedback control. More details can be found in our report [54].
The scheduling is then replanned using the updated model

by gradually migrating the current plan to the optimal one.
The overhead of performing such feedback-based dynamic
regulation is negligible as our cost model involves solving
simple linear equations and rescheduling is incrementally
conducted. However, its response may be lagged when facing
a bursting workload. More sophisticated controllers [69] that
monitor workload statistical information in the datastream
may achieve an even better response to workload changes but
beyond the scope of this work.

VI. METHODOLOGY

In this section, we first introduce the examined competing
mechanisms, followed by benchmark workloads including
both varying compression algorithms and datasets. Then, we
discuss the instrument of targeting performance metrics.

A. Competing Mechanisms

We compare CStream with the following five competing
mechanisms in parallelizing the stream compression
procedures: OS, CS, RR, BO, and LO as follows: 1)
Operating System (OS). The replicated tasks of the whole
stream compression procedure (without decomposition)
are scheduled by the Linux 5.10 kernel at thread level
with the energy-aware-scheduling (EAS) [70] strategy. 2)
Coarse-grained Scheduling (CS). Following prior work
of coarse-grained workload scheduling on asymmetric
multicores [32], we can schedule each replica of the entire
stream compression procedure as a single task with our
asymmetry-aware scheduling scheme. 3) Round Robin
(RR). Under RR, we apply fine-grained decomposition
of CStream, and the decomposed tasks are scheduled in a
round-robin manner, i.e., sequentially mapped to each core.
4) Big-core Only (BO). Under BO, the decomposed tasks
are randomly scheduled to the big cores of rk3399 (core4
to core5), and little cores (core0 to core3) are left idle. 5)
Little-core Only (LO). Under LO, the decomposed tasks
are randomly scheduled to the little cores of rk3399 (core0 to
core3), and big cores (core4 to core5) are left idle.

Under OS and CS, the stream compression procedure is
replicated into multiple tasks in achieving data parallelism
(without decomposition and pipelining parallelism). The tasks
are subsequently scheduled by the Linux kernel under OS,
or with asymmetry-aware scheduling of CStream under CS.
Under RR, BO, and LO, the stream compression procedure
is decomposed in a fine-grained manner as CStream does, but
task scheduling is not asymmetry-aware.

B. Input Workloads

CStream supports varying stream compression algorithms
and datasets. We select a wide range of algorithms and datasets
with distinct characteristics for a comprehensive evaluation.

1) Algorithms: We focus on parallelizing the following
three lightweight stream compression algorithms in our
evaluation. Nevertheless, CStream can be easily extended to
support other stream compression algorithms. 1) tcomp32 cuts
off unused bits of each 32-bit symbol, which is a stateless
stream compression following Algorithm 1’s abstraction. 2)

lz4 [55] is a popular LZ77-based [38] stateful compression
(i.e., Algorithm 2). It uses a hash table as its state to replace
the traditional dictionary of LZ77. 3) tdic32 is a simplified
variable length coding created by combining the two above,
which is also stateful. Specifically, it borrows the hash table
from lz4 and employs a memory I/O pattern similar to
tcomp32 (i.e., byte-unaligned encoding for each 32-bit single
symbol).

2) Datasets: We use three real-world and one carefully
designed synthetic dataset in our evaluation. These datasets
cover varying statistical properties, such as 1) vocabulary
duplications [38], 2) dynamic range of the symbol [58],
[50], and 3) symbol entropy [19]. Since the tcomp32, lz4,
and tdic32 share a 32-bit reading of data, we define data
within 32-bit as a symbol, while more than 32-bit of data
is treated as a vocabulary. The datasets are as follows. 1)
Sensor [71] represents a type of full-text streaming data that
is generated by automated sensors. Its most compressible part
is the symbol entropy, which is packed in an XML format with
only ASCIL code. Furthermore, the XML pattern can result
in partial vocabulary duplication. We let every 16 ASCIL
characters in Sensor form one 128-bit tuple in our evaluation.
2) Rovio [72] continuously monitors the user actions of a
given game to ensure that their services work as expected, and
is packed in (64 − bit key, 64 − bit payload). Its high key
duplication leads to significant vocabulary duplication [73].
3) Stock [74] is a real-world stock exchange dataset packed in
(32− bit key, 32− bit payload) binary format. Unlike Rovio,
its key duplication is much lower. 4) Micro is a synthetic
dataset used to easily evaluate the impact of varying workload
properties. Each tuple in Micro is a 32-bit plain value.

C. Instrument of Performance Metrics
Throughout this study, we focus on two important

performance metrics. The first is compressing latency
constraint violation (CLCV for short). For each test, we
repeat the measurement 100 times, and CLCV refers to
the fraction of measurements violating Lset and the total
measurements. The second is energy consumption, denoted as
Emes. We let Emes refer to the overhead for compressing each
unit of data (i.e., in µJ/byte). The system overhead of each
mechanism, such as profiling and scheduling in CStream are
included in Emes. We have further developed an energy meter
that provides accurate measurement with low overhead. More
details can be found in our report [54].

VII. EVALUATION

We use the Radxa Rockpi 4a [75] for evaluation. This
platform is equipped with an rk3399 asymmetric multicores
processor, and please refer to our technical report [54] for its
detailed specifications. By default, each core runs at its highest
frequency (i.e., 1.8GHz for A72, and 1.416GHz for A53).
To eliminate the impact of network transmission overhead
during input data feeding, the input datasets are first populated
(synthetic dataset) or loaded (real datasets) in memory. We set
the batch size (B) as 932,800 bytes and Lset as 26µs/byte
unless otherwise stated.

A. End-to-End Comparison

In this section, we show the end-to-end comparison between
CStream and five competing mechanisms.

Energy Consumption Comparison. Figure 5 reports the
energy consumption of different mechanisms on handling
different datasets. In general, we can see that CStream
always leads to the least energy consumption. For example,
CStream can save up to 53.23% energy consumption on the
lz4-Stock procedure compared with BO. CStream determines
the core mapping of decomposed stream compression tasks
according to their varying operational intensity. In contrast,
LO and BO underutilized either the big cores or little
cores on asymmetric multicores, while operational-intensity-
unconscious parallelization (i.e., OS), or coarse-grained
parallelization (i.e., CS) fails to explore the suitable task-
core mapping between stream compression procedure and
asymmetric multicores.

Compressing Latency Constraint Violation Comparison.
Figure 6 presents the CLCV of different mechanisms on
handling different datasets. We can see that CStream
can avoid any compressing latency constraint violations for
the evaluated workloads even under such a strict latency
constraint. We find that it is mainly because the statistical
characteristics of datasets in our experiments are relatively
stable over time. We show the evaluation of more dynamic
workloads shortly later. In contrast, LO and RR fail to
preserve the compressing latency constraints due to the low
utilization of high-performance ’big cores’ in conducting high
operational intensity steps (e.g., the s2 in Algorithm 1) of
the stream compression procedure. On the contrary, CS and
BO underutilize ‘little cores’ in conducting low operational
intensity steps (e.g., the s0 in Algorithm 1). In particular, CS
tries to firstly schedule as much as possible to ‘big cores’
before utilizing the ‘little cores’, as the operational intensity
of the whole stream compression procedure is relatively
high (e.g., about 200 for tcomp32-Rovio). OS fails for two
reasons. First, its frequent migration of tasks leads to extra
overhead. Our further investigation reveals that OS scheduler
involves about 60,000 context switches while CStream only
involves about 10 context switches for compressing every
megabyte of input data. Second, OS treats stream compression
tasks as a black box, and it hence leads to a relatively
inaccurate estimating of latency and causes compressing
latency constraint violations.

Dynamic Workloads. The stream properties (e.g., entropy
or dynamic range of symbols) may change on the fly. We
now evaluate the adaptivity of CStream to the dynamic
workload by using the tcomp32-Micro procedure. We set
the dynamic range of symbols to 500 at the beginning, and
increase it to 50000 immediately after the whole fifth batch is
compressed. The energy consumption and compressing latency
constraint violation of CStream with and without feedback-
based regulation (Section V-D) are demonstrated in Figure 7.
Workload changes after the fifth batch and adaptation finishes
at the ninth batch. We observe that the compressing latency

lz
4-

S
en

so
r

tc
om

p3
2-

S
en

so
r

td
ic

32
-S

en
so

r

lz
4-

R
ov

io

tc
om

p3
2-

R
ov

io

td
ic

32
-R

ov
io

lz
4-

S
to

ck

tc
om

p3
2-

S
to

ck

td
ic

32
-S

to
ck

0.0

0.5

1.0

1.5

E m
es

 (μ
J/b

yt
e)

CStream
OS

CS
RR

BO
LO

Fig. 5: Energy consumption comparison.

lz
4-

S
en

so
r

tc
om

p3
2-

S
en

so
r

td
ic

32
-S

en
so

r

lz
4-

R
ov

io

tc
om

p3
2-

R
ov

io

td
ic

32
-R

ov
io

lz
4-

S
to

ck

tc
om

p3
2-

S
to

ck

td
ic

32
-S

to
ck

0.0

10.0

20.0

30.0

CL
CV

(%
)

CStream
OS

CS
RR

BO
LO

Fig. 6: Compressing latency constraint
violation comparison. Note that, CStream
introduces zero violation.

2 4 6 8 10
Batch number

0.35

0.40

0.45

E m
es
(μ
J/b

yt
e)

readaptation

workload change

w/o regulation w/ regulation

(a) Energy consumption

2 4 6 8 10
Batch number

0

10

CL
CV

 (%
)

readaptation

workload change

w/o regulation w/ regulation

(b) Compressing latency constraint
violation

Fig. 7: Adaptation to dynamic
workload.

constraint will be violated after workload change if there is
no feedback-based regulation, as the previous profiling leads
to an inaccurate estimation of compressing latency. With the
feedback-based regulation, CStream is able to adapt to the
changing workload eventually from the ninth batch and switch
to the new optimal scheduling plan, which requires higher
energy consumption to avoid compressing latency violation.
There are some vibrations during the adapting process, such
as high energy consumption at the eighth batch, due to the
continuous calibration process with the PID-based controller
(Section V-D). It is worth noting that the overhead of such an
adapting process is marginal, i.e., 0.9% energy consumption
and 6% processing time of compressing each batch of data.

B. Workload Sensitivity Study

In this section, we show the superiority of CStream under
varying workload characteristics, including procedure settings
and data statistic properties.

1) Procedure Settings: We vary the compressing latency
constraint (Lset) and batch size (B) of tcomp32-Rovio stream
compression procedure as follows.

Varying Compressing Latency Constraint (Lset). We
show the impact of varying compressing latency constraints
shown in Figure 8. While OS, RR, BO, and LO have
constant energy consumption, CStream and CS achieve more
on energy saving under a larger Lset, and generate a lower
latency scheduling plan under a smaller Lset. However,
the coarse-grained way of CS leads to 1) higher energy
consumption at each Lset when comparing with CStream and
2) underutilization of ‘little cores’ and failure of meeting the
tight settings (i.e., smaller) of Lset.

Varying Batch Size (B). We study the energy consumption
under different sizes of batch (i.e., B) in Figure 9. We observe
that the energy consumption remains nearly stable when there
is a large enough batching of data (i.e., B > 103byte). A
small batch size may increase energy consumption slightly due
to the constant system overheads such as context switching

and OS system calls [73]. In general, energy consumption is
determined ηi

ζi
proportion (Equation 4) of each task ti, and

both ηi (instructions per unit time) and ζi (instructions per unit
energy) are determined by the task’s operational intensity (κi).
CStream can select the minimal value of ηi

ζi
for each task to

minimize energy consumption, by utilizing 1) the fine-grained
decomposed operational intensity (κi) when compared with
CS, and 2) the asymmetry-aware scheduling when comparing
with OS, RR, LO and BO.

2) Data Statistic Properties: We tune the data statistic
properties including vocabulary duplication, symbol
duplication, and dynamic range. Specifically, we use
the synthetic dataset Micro to study their impacts.

Vocabulary Duplication. We first conduct lz4-Micro
procedure under varying vocabulary duplication. The lz4 is
most sensitive to vocabulary duplication, and operational
intensity (κi) of lz4 tasks changes differently with vocabulary
duplication due to their different functions. For instance, the κi

of tasks conducting state update (s2 in Algorithm 2) decreases
with increasing vocabulary duplication, as the hash table of
state can be updated less. However, the κi of tasks conducting
state-based encoding (s3 in Algorithm 2) will increase, as lz4
is more likely to conduct ‘backward searching’ for expanding
match [55]. In Figure 10, we vary the vocabulary duplication
from low to high and have two observations. First, CStream
is able to decompose the lz4 procedure and select the best
scheduling plan of tasks no matter how vocabulary duplication
changes. Second, each mechanism has its highest energy
consumption when duplication is moderate, this is because
the aforementioned different tendencies are reconciled under
moderate duplication and lead to total maximum energy
consumption.

Symbol Duplication. We next conduct the tdic32-Micro
procedure while varying the duplication of the 32-bit symbol.
The tdic32 is most sensitive to symbol duplication, and the
operational intensity (κi) of most tdic32 tasks decreases with
the increasing symbol duplication. While tasks conducting s0

10 12 14 16 18 20 22 24 26
Lset (μs/byte)

0.4

0.5

0.6

0.7

0.8

E m
es
(μ
J/b

yt
e)

CStream
OS

CS
R&R

BO
LO

(a) Energy consumption

10 12 14 16 18 20 22 24 26
Lset (μs/byte)

0

25

50

75

100

CL
CV

(%
)

CStream
OS

CS
R&R

BO
LO

(b) Compressing latency constraint violation

Fig. 8: Varying Lset.

102 103 104 105 106 107
batch size B (byte)

0.4

0.5

0.6

E m
es
(μ
J/b

yt
e)

CStream
OS

CS
RR

BO
LO

Fig. 9: Varying batch size B.

104 105
vocabulary duplication

0.2

0.3

0.4

0.5

E m
es
(μ
J/b

yt
e)

CStream
OS

CS
R&R

BO
LO

Fig. 10: Varying vocabulary duplication.

104 105 106
symbol duplication

0.4

0.5

0.6

E m
es
(μ
J/b

yt
e)

CStream
OS

CS
R&R

BO
LO

Fig. 11: Varying symbol duplication.

103 104 105
dynamic range

0.4

0.5

0.6

E m
es
(μ
J/b

yt
e)

CStream
OS

CS
R&R

BO
LO

Fig. 12: Varying dynamic range.

and s1 remain nearly the same, higher symbol duplication
leads to 1) less state update for tasks conducting s2 and 2)
shorter average encoding and writing for tasks about s3 and
s4. The results of parallelizing tdic32 are shown in Figure 11.
We can see that LO has an increasing energy consumption
with increasing symbol duplication. This is because when
symbol duplication increases, more tdic32 tasks have their
operational intensity κi dropped to the 30 ∼ 70 region, which
suffers from the in-order stall in L1-I cache as depicted in
Figure 3. In contrast, BO becomes more energy efficient with
increasing symbol duplication as ‘big cores’ are out-of-order.
CStream, OS, CS, and RR utilize both big and little cores,
and their different utilization on the asymmetric multicores
leads to different energy consumption at changing symbol
duplication. Nevertheless, CStream is always able to achieve
the least energy consumption, which reaffirms its superiority
compared to competing mechanisms.

Dynamic Range. Finally, the results of tcomp32-Micro
procedure under the varying dynamic ranges of the 32-
bit symbol, are shown in Figure 12. The tcomp32 is most
sensitive to dynamic range, as increasing dynamic range makes
its arithmetic computation in s1 and writing output data
in s2 more costly. Therefore, operational intensity (κi) and
compressing latency (li) of most tasks ti in the procedure are
increased, resulting in a higher energy consumption according
to Equations 4. CStream always outperforms others, but its
energy saving becomes less significant when the dynamic
range is high, as there is less room for optimization.

C. System Configuration Analysis

In this section, we evaluate the system sensitivity by tuning
core frequency statically and dynamically. The tcomp32-Rovio
procedure is used as an illustration example.

Static Frequency Regulation. We vary core frequency
statically and evaluate how it affects the measured compressing
energy consumption (Emes).

TABLE III: Model correctness under optimal scheduling plans.

Estimation object variable
method lz4 tcomp32 tdic32

Compressing Latency
Lest(µs/byte) 25.5 23.2 23.3
Lpro(µs/byte) 23.6 21.7 25.3
relative errorL 0.08 0.07 0.08

Energy Consumption
Eest(µJ/byte) 0.47 0.43 0.44
Epro(µJ/byte) 0.42 0.40 0.48
relative errorE 0.14 0.08 0.09

The results are shown in Figure 13. Obviously, the CStream
outperforms other mechanisms under varying frequency
settings. It is also worth noting that low frequency doesn’t
imply lower energy consumption. Although lower frequency
results in low power (i.e., measured in Watts), their increased
latency in stream compression may lead to even higher energy
consumption, especially when tasks run on ‘little cores’.

Dynamic Frequency Regulation. We also consider
dynamically regulating the frequency by using the DVFS [76],
[77], [78]. we report how each of the six mechanisms
cooperates with different DVFS strategies in Figure 14. We use
the “default” strategy for comparison by fixing each core at
its highest frequency. The “conservative” and “on-demand” are
two DVFS methods trying to reduce energy consumption by
frequency reconfiguration on the fly, and their major difference
is that the “conservative” strategy changes frequency less when
compared with “on-demand”.

We have three observations here. First, CStream always
achieves the least energy consumption and least compressing
latency constraint, regardless of using what kind of DVFS
strategy. Second, the conservative” strategy can further reduce
energy consumption for all mechanisms compared with
their default conditions. However, the compressing latency
constraint violation for all mechanisms is increased by using
such a strategy. This is because the “conservative” DVFS
only offers relative coarse-grained guarantee of meeting
the compressing latency constraints. Specifically, there is

0.816(B&L)

1.008(B&L)

1.2(B&L)

1.416(B&L)

1.608B&1.416L

1.8B&1.416L

frequncy/GHz

0.4

0.5

0.6

0.7

E m
es
(μ
J/b

yt
e)

CStream
OS

CS
R&R

BO
LO

Fig. 13: Impacts of statically varying core
frequency. “B” denotes the big cores while
“L” denotes the little cores.

default conservative on-demand
0.0

0.2

0.4

0.6

0.8

E m
es
(μ
J/b

yt
e)

CStream
OS

CS
RR

BO
LO

(a) Energy consumption (Emes)

default conservative on-demand
0.0
5.0

10.0
15.0
20.0
25.0

CL
CV

(%
)

CStream
OS

CS
RR

BO
LO

(b) Compressing latency constraint violation
(CLCV)

Fig. 14: Impacts of DVFS strategies.

simple +decom. +asy-comp. +asy-comm.

0.4

0.5

0.6

0.7

E m
es

(μ
J/b

yt
e)

0

25

50

75

100

CL
CV

(%
)

Emes CLCV

Fig. 15: Factor analysis about energy dissipation consumption
(Emes) and compressing latency constraint violation (CLCV).

uncertain extra overhead in dynamic frequency regulation,
leading to more compressing latency constraint violations.
Third, the “on-demand” strategy leads to no improvement
but more compressing latency constraint violation and energy
consumption. This is because it changes the frequency too
often and involves much extra overhead in the frequency
switching.

D. Break-down Analysis

Since CStream incorporates fine-grained decomposition and
asymmetry-ware (i.e., both computation and communication)
task scheduling as two key contributions, we conduct a break-
down analysis to study their impacts respectively. We use
tcomp32-Rovio procedure as the illustration example, and the
following break-down factors will be studied.
• simple refers to following a symmetric-multicore-aware

parallel data compression [79], which only exploits data
parallelism. Specifically, the whole procedure is treated as
a task tall. When a single tall fails to meet the compressing
latency constraint, it is replicated into multiple equivalent
tasks (each one is denoted as a tre).

• +decom. adds the fine-grained decomposition on stream
compression and enables the basic exposition of task-
core affinity as discussed in Section IV. Specifically,
the procedure is decomposed into two tasks namely t0
(conducting s0 and s1 in Algorithm 1) and t1 (conducting
s2 in Algorithm 1). Both t0 and t1 will be randomly
scheduled to asymmetric multicores.

• +asy-comp. adds the asymmetric-computation-awareness
to schedule t0 and t1, including all modeling in
Section V-B but ignoring the asymmetric communication

TABLE IV: Comparison among decomposed tasks

Task operational
intensity κ

compressing latency
l (µs/byte)

energy consumption
e (µJ/byte)

big
core

little
core

big
core

little
core

t0 320 15.0 32.6 0.29 0.27
t1 102 13.5 21.7 0.32 0.10
tall 220 28.3 53.2 0.59 0.34
tre×2 220 15.0 27.1 0.75 0.51

effects. Specifically, the unit communication latency
Lcomm
ji′ ,ji

and Lcomm
ji,ji′

in Equation 7 are treated the same
for any core ji′ and ji that non-equal.

• +asy-comm. adds the consideration of asymmetric
communication to schedule t0 and t1, and is the fully
functional CStream as introduced in Section III.

Impacts of Fine-grained Decomposition. By comparing
+decom. with simple, we found that the fine-grained
decomposition provides opportunities for better utilization of
both big cores and little cores, which can reduce energy
consumption a lot. To further comprehend the effects of
decomposition, we compare the operational intensity (κ),
compressing latency (l), and energy consumption (e) of the
decomposed tasks t0/t1 , single thread all procedure (tall), and
the replicated version of tall (i.e., tre×2) in Table IV. There
are three takeaways. First, t0 is better to be scheduled to ‘big
cores’ than other tasks due to its highest operational intensity.
Specifically, it can reduce 53% compressing latency when
scheduled to a ‘big core’ instead of a ‘little core’, with only 8%
increased energy consumption. Second, tall and tre × 2 lead
to much underutilization of asymmetric multicores, as they
simply reconcile the operational intensity of t0 (i.e., 340) and
t1 (i.e., 102) to a medium value 220, ignoring the fact that they
have large difference and should be treated differently. Third,
only applying +decom. is far from optimal. Specifically, both
t0 and t1 should be scheduled to the “right place” (i.e., big
core and little core respectively as shown in table) in achieving
energy saving or compressing latency reduction, but +decomp.
schedules them randomly to asymmetric multicores.

Impacts of Asymmetry-aware Scheduling. The
asymmetry-aware scheduling includes the awareness of both
asymmetric computation and asymmetric communication,

and we can observe their impacts respectively from +asy-
comp. and +asy-comm. First, +asy-comp. adds asymmetric
computation awareness to guide the scheduling of fine-
grained tasks t0 and t1. It can always correctly determine
the varying task-core affinity among them according to their
different operational intensity (Table IV), which reduces
energy consumption. Nevertheless, due to the ignorance
of asymmetric communication effects, it is too aggressive
for energy saving and violates the latency constraint (Lset)
frequently. Second, CStream further adds asymmetric
communication awareness (i.e., +asy-comm.) compared to
+asy-comp. It can model and plan well before executing t0
and t1, and thus prevent the compressing latency constraint
violation while ensuring the least energy consumption.

As asymmetry-aware scheduling is guided by the cost
model, we evaluate its correctness here. We show the relative
error rate associated with estimated compressing latency (Lest)
or energy consumption (Eest) per procedure by our model.
Specifically, we define relative errorL =

|Lpro−Lest|
Lpro

and

relative errorE =
|Epro−Eest|

Epro
, where Lpro and Epro are

the measured compressing latency and energy consumption
of the tested procedure, respectively. Table III shows the
model accuracy of all evaluated algorithms under their
optimal scheduling plans in compressing Rovio. Overall, our
estimation approximates the measurement well for the Lest

and Eest of all three algorithms. It is therefore able to
determine the optimal scheduling plan as shown previously.
The inaccuracy is mainly caused by the difficulty in accurately
estimating the unit overhead of communication (Lcomm

j′,j) on
the fly, as it is affected by multiple factors such as memory
access patterns and hardware prefetcher units.

VIII. RELATED WORK

In this section, we review the related work and reveal the
limitations that motivate this work.

Parallel Data Compression. A lot of compression
algorithms have been proposed since 1950s [80], focusing on
improving the theoretical compressibility [16] and reducing
compressing complexity [18], [19]. On the FPGA, Milward
et al. [81] implemented a novel dictionary-based parallel
compression implementation, Sano et al. [82] achieved float-
point data compression, Tian et al. [83] proposed parallel
compression for scientifical data, and Bark et al. [22]
parallelized the lz4 algorithm. On the GPU, the parallelization
of several LZ algorithms [38] have been conducted such
as [84] and [85], and Huang et al. [86] have also
parallelized trajectory-specific compression algorithms. Due
to the significant difference in hardware architectures, it
is unclear how can those works be applied to parallel
compression on asymmetric multicores. Researchers have
also utilized the Symmetric Multicore Processors (SMPs) for
parallel compression: to compress the float-point data [87]
and to drill the inner parallelism (in a SIMD-like manner)
of LZ77 [88]. Recently, Knorr et al. [89] achieved high
throughput of large volumes of scientific data scaling up to
24 threads, and Dua et al. [90] compressed the hyperspectral

images on a supercomputer with a hyper-cube structure.
Our work differs significantly from existing works in three
aspects: 1) hardware architecture (i.e., we focus on asymmetric
multicores), 2) compression algorithms (i.e., we conduct data
stream compression), and 3) performance metrics (i.e., we
consider both compressing latency constraint violation and
energy consumption).

Efficient Utilization of asymmetric multicores.
The approaches to effectively manage the asymmetric
multicores include modeling [24] and predicting [25] of
performance/energy, CPI stack [36] and DVFS-calibrated
scheduling [78], [91], [26]. The performance/energy model
has been merged into the popular mainline Linux from
version 5.0 onwards as the Energy Aware Scheduling
(EAS) [92]. Yu et al. [35] recently proposed a collaborative
OS scheduler addressing comprehensive multiple optimization
objects on asymmetric multicores. However, these models
treat the software running on asymmetric multicores as
a black box due to the isolation by OS and system-level
statistics, which overlooks many optimization opportunities
as demonstrated in our experiments. There are also a few
existing user-space research projects working on energy or
latency optimization on asymmetric multicores, including
virtual machine [31], web browser [33], game governor [93]
and artificial intelligence framework [32]. However, all of
them focus on scheduling the whole workload, which is
relatively coarse-grained. For instance, Wang et al. [32]
optimized the matrix operation tasks which are entirely
computation intensive. In contrast, we exploit the fine-grained
behavior (i.e., the different operational intensity among steps,
Section III-A) of stream compression procedures.

IX. CONCLUSION

This paper introduced CStream, a novel framework to
parallelize stream compression on asymmetric multicores.
CStream’s superiority is gained by both fine-grained
decomposition and asymmetry-aware scheduling strategy. We
have experimentally demonstrated that CStream achieves
the following desired properties: 1) when the compressing
latency constraint (Lset) set by the user is relatively loose,
it can achieve the least energy consumption; and 2) when
encountering a tight Lset, its latency constraint violation is
always minimized. In the future, we plan to further exploit
CStream on more stream compression algorithms and on
other hardware architectures such as Intel Agilex and Nvidia
Jetson to achieve energy-efficient and low latency stream
compression for a wide range of IoT applications.

ACKNOWLEDGEMENT

We thank Dr. Feng Zhang for joining the initial discussion,
and the anonymous ICDE reviewers for their valuable
comments. This work is supported by the National Research
Foundation, Singapore and Infocomm Media Development
Authority under its Future Communications Research &
Development Programme FCP-SUTD-RG-2022-005, FCP-
SUTD-RG-2022-006, and a SUTD Start-up Research Grant
(SRT3IS21164).

REFERENCES

[1] G. Pekhimenko, C. Guo, M. Jeon, P. Huang, and L. Zhou, “Tersecades:
Efficient data compression in stream processing,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, Jul. 2018, pp. 307–320. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/pekhimenko

[2] G. Theodorakis, F. Kounelis, P. Pietzuch, and H. Pirk, “Scabbard:
Single-node fault-tolerant stream processing,” Proc. VLDB Endow.,
vol. 15, no. 2, p. 361–374, oct 2021. [Online]. Available: https:
//doi.org/10.14778/3489496.3489515

[3] J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, “An energy
efficient iot data compression approach for edge machine learning,”
Future Generation Computer Systems, vol. 96, pp. 168–175, 2019.

[4] D. Zordan, B. Martinez, I. Vilajosana, and M. Rossi, “On the
performance of lossy compression schemes for energy constrained
sensor networking,” ACM Transactions on Sensor Networks (TOSN),
vol. 11, no. 1, pp. 1–34, 2014.

[5] C. J. Deepu, C.-H. Heng, and Y. Lian, “A hybrid data compression
scheme for power reduction in wireless sensors for iot,” IEEE
transactions on biomedical circuits and systems, vol. 11, no. 2, pp. 245–
254, 2016.

[6] A. Ukil, S. Bandyopadhyay, and A. Pal, “Iot data compression: Sensor-
agnostic approach,” in 2015 data compression conference. IEEE, 2015,
pp. 303–312.

[7] P. Shilane, M. Huang, G. Wallace, and W. Hsu, “Wan-optimized
replication of backup datasets using stream-informed delta
compression,” ACM Transactions on Storage (ToS), vol. 8, no. 4,
pp. 1–26, 2012.

[8] S. Zeuch, A. Chaudhary, B. D. Monte, H. Gavriilidis, D. Giouroukis,
P. M. Grulich, S. Breß, J. Traub, and V. Markl, “The nebulastream
platform for data and application management in the internet
of things,” in CIDR 2020, 10th Conference on Innovative Data
Systems Research, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org, 2020. [Online]. Available:
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf

[9] M. Bansal, I. Chana, and S. Clarke, “A survey on iot big data: Current
status, 13 v’s challenges, and future directions,” vol. 53, no. 6, 2020.
[Online]. Available: https://doi.org/10.1145/3419634

[10] A. Lavric, V. Popa, and S. Sfichi, “Street lighting control system based
on large-scale wsn: A step towards a smart city,” in 2014 International
Conference and Exposition on Electrical and Power Engineering (EPE),
2014, pp. 673–676.

[11] V. A. Memos, K. E. Psannis, Y. Ishibashi, B.-G. Kim, and B. B. Gupta,
“An efficient algorithm for media-based surveillance system (eamsus)
in iot smart city framework,” Future Generation Computer Systems,
vol. 83, pp. 619–628, 2018.

[12] P. Rizwan, K. Suresh, and M. R. Babu, “Real-time smart traffic
management system for smart cities by using internet of things and
big data,” in 2016 international conference on emerging technological
trends (ICETT). IEEE, 2016, pp. 1–7.

[13] (2020) Eclipse iot working group. iot developer survey 2018. [Online].
Available: https://https://blogs.eclipse.org/post/benjamin-cab%C3%A9/
key-trends-iotdeveloper-survey-2018,2018.

[14] (2021) Arm cortex-a53 mpcore processor technical reference manual
, https://developer.arm.com/documentation/ddi0500/j/. Last Accessed:
2021-05-12.

[15] (2021) Arm cortex-a72 mpcore processor technical reference manual
, https://developer.arm.com/documentation/100095/0003. Last Accessed:
2021-05-12.

[16] (2021) 7-zip home page, https://www.7-zip.org/. Last Accessed: 2021-
07-25.

[17] W. Li and Y. Yao, “Accelerate data compression in file system,” in 2016
Data Compression Conference (DCC). IEEE Computer Society, 2016,
pp. 615–615.

[18] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compression
techniques: Review, comparison and analysis,” in 2017 Second
International Conference on Electrical, Computer and Communication
Technologies (ICECCT). IEEE, 2017, pp. 1–8.

[19] A. Moffat, “Huffman coding,” ACM Computing Surveys (CSUR), vol. 52,
no. 4, pp. 1–35, 2019.

[20] A. Ozsoy, M. Swany, and A. Chauhan, “Pipelined parallel lzss
for streaming data compression on gpgpus,” in 2012 IEEE 18th

International Conference on Parallel and Distributed Systems. IEEE,
2012, pp. 37–44.

[21] K. K. Yong, M. W. Chua, and W. K. Ho, “Cuda lossless data
compression algorithms: a comparative study,” in 2016 IEEE Conference
on Open Systems (ICOS). IEEE, 2016, pp. 7–12.

[22] M. Bark, S. Ubik, and P. Kubalik, “Lz4 compression algorithm on fpga,”
in 2015 IEEE International Conference on Electronics, Circuits, and
Systems (ICECS). IEEE, 2015, pp. 179–182.

[23] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compression
techniques: Review, comparison and analysis,” in 2017 Second
International Conference on Electrical, Computer and Communication
Technologies (ICECCT). IEEE, 2017, pp. 1–8.

[24] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and
S. Vishin, “Power-performance modeling on asymmetric multi-cores,” in
2013 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES). IEEE, 2013, pp. 1–10.

[25] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, “Caloree: Learning
control for predictable latency and low energy,” ACM SIGPLAN Notices,
vol. 53, no. 2, pp. 184–198, 2018.

[26] M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini, and
K. S. McKinley, “Exploiting heterogeneity for tail latency and energy
efficiency,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017, pp. 625–638.

[27] S. Srinivasan, N. Kurella, I. Koren, and S. Kundu, “Exploring
heterogeneity within a core for improved power efficiency,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 4, pp.
1057–1069, 2015.

[28] V. Petrucci, O. Loques, and D. Mossé, “Lucky scheduling for energy-
efficient heterogeneous multi-core systems,” in Proceedings of the 2012
USENIX conference on Power-Aware Computing and Systems, 2012, pp.
7–7.

[29] M. Pricopi and T. Mitra, “Task scheduling on adaptive multi-core,” IEEE
transactions on Computers, vol. 63, no. 10, pp. 2590–2603, 2013.

[30] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “Armor:
Defending against memory consistency model mismatches in
heterogeneous architectures,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, 2015, pp. 388–
400.

[31] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and
yang of power and performance for asymmetric hardware and managed
software,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2012, pp. 225–236.

[32] M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu, “Asymo: scalable
and efficient deep-learning inference on asymmetric mobile cpus,” in
Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, 2021, pp. 215–228.

[33] Y. Zhu and V. J. Reddi, “High-performance and energy-efficient mobile
web browsing on big/little systems,” in 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2013, pp. 13–24.

[34] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of
performance asymmetry in emerging multicore architectures,” in 32nd
International Symposium on Computer Architecture (ISCA’05). IEEE,
2005, pp. 506–517.

[35] T. Yu, R. Zhong, V. Janjic, P. Petoumenos, J. Zhai, H. Leather,
and J. Thomson, “Collaborative heterogeneity-aware os scheduler for
asymmetric multicore processors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 5, pp. 1224–1237, 2020.

[36] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2012, pp. 213–224.

[37] V. Pankratius, A. Jannesari, and W. F. Tichy, “Parallelizing bzip2: A
case study in multicore software engineering,” IEEE software, vol. 26,
no. 6, pp. 70–77, 2009.

[38] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[39] X. Gu, P. S. Yu, and K. Nahrstedt, “Optimal component composition for
scalable stream processing,” in 25th IEEE International Conference on
Distributed Computing Systems (ICDCS’05). IEEE, 2005, pp. 773–782.

[40] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction,” in Proceedings. 36th Annual IEEE/ACM

https://www.usenix.org/conference/atc18/presentation/pekhimenko
https://doi.org/10.14778/3489496.3489515
https://doi.org/10.14778/3489496.3489515
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
https://doi.org/10.1145/3419634
https://https://blogs.eclipse.org/ post/benjamin-cab%C3%A9/key-trends-iotdeveloper-survey-2018, 2018.
https://https://blogs.eclipse.org/ post/benjamin-cab%C3%A9/key-trends-iotdeveloper-survey-2018, 2018.
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/100095/0003
https://www.7-zip.org/

International Symposium on Microarchitecture, 2003. MICRO-36.
IEEE, 2003, pp. 81–92.

[41] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004. IEEE, 2004, pp. 64–75.

[42] X.-P. Zhang and X.-M. Cheng, “Energy consumption, carbon emissions,
and economic growth in china,” Ecological economics, vol. 68, no. 10,
pp. 2706–2712, 2009.

[43] U. Soytas and R. Sari, “Energy consumption, economic growth, and
carbon emissions: challenges faced by an eu candidate member,”
Ecological economics, vol. 68, no. 6, pp. 1667–1675, 2009.

[44] K. Fang, R. Heijungs, and G. R. de Snoo, “Theoretical exploration for
the combination of the ecological, energy, carbon, and water footprints:
Overview of a footprint family,” Ecological Indicators, vol. 36, pp. 508–
518, 2014.

[45] (2021) Rockchip wiki rk3399, http://opensource.rock-chips.com/wiki
RK3399. Last Accessed: 2021-05-10.

[46] S. Z. Sheikh and M. A. Pasha, “Energy-efficient cache-aware scheduling
on heterogeneous multicore systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 1, pp. 206–217, 2022.

[47] A. Suyyagh and Z. Zilic, “Energy and task-aware partitioning on single-
isa clustered heterogeneous processors,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 2, pp. 306–317, 2019.

[48] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[49] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. IEEE, 2013, pp. 661–672.

[50] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 194–203,
1975.

[51] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery,
N. J. Wright, M. W. Hall, and L. Oliker, “Roofline model toolkit: A
practical tool for architectural and program analysis,” in International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems. Springer, 2014, pp. 129–148.

[52] (2022) Stream: Sustainable memory bandwidth in high performance
computers , https://www.cs.virginia.edu/stream/. Last Accessed: 2022-
06-29.

[53] (2021) An introduction to amba axi , https://developer.arm.com/
documentation/102202/latest/. Last Accessed: 2021-12-05.

[54] X. Zeng and S. Zhang, “Parallelizing stream compression for iot
applications on asymmetric multicores (technical report),” 2022, https:
//tonyskyzeng.github.io/downloads/tr cstream/TR CSTREAM.pdf.

[55] (2021) lz4 source code, https://github.com/lz4/lz4/. Last Accessed: 2021-
07-25.

[56] S. Zhang, J. He, A. C. Zhou, and B. He, “Briskstream: Scaling
data stream processing on shared-memory multicore architectures,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 705–722.

[57] S. Zhang, Y. Wu, F. Zhang, and B. He, “Towards concurrent stateful
stream processing on multicore processors,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE), 2020, pp. 1537–
1548.

[58] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in 2012 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2012, pp.
377–388.

[59] C. Iancu, S. Hofmeyr, F. Blagojević, and Y. Zheng, “Oversubscription
on multicore processors,” in 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS). IEEE, 2010, pp. 1–11.

[60] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading
the loft,” IEEE Computer Architecture Letters, vol. 13, no. 1, pp. 21–24,
2013.

[61] (2021) Perf wiki, https://perf.wiki.kernel.org/index.php/Main Page. Last
Accessed: 2021-11-07.

[62] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,”
Optimization and Engineering, vol. 10, no. 1, pp. 1–17, 2009.

[63] A. Toriello and J. P. Vielma, “Fitting piecewise linear continuous
functions,” European Journal of Operational Research, vol. 219, no. 1,
pp. 86–95, 2012.

[64] R. Bellman, “The theory of dynamic programming,” Bulletin of the
American Mathematical Society, vol. 60, no. 6, pp. 503–515, 1954.

[65] S. Schneider, J. Wolf, K. Hildrum, R. Khandekar, and K.-L.
Wu, “Dynamic load balancing for ordered data-parallel regions in
distributed streaming systems,” in Proceedings of the 17th International
Middleware Conference, ser. Middleware ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2988336.2990475

[66] K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design,
and technology,” IEEE transactions on control systems technology,
vol. 13, no. 4, pp. 559–576, 2005.

[67] L. Shen, Z. Liu, Z. Zhang, and X. Shi, “Frame-level bit allocation based
on incremental pid algorithm and frame complexity estimation,” Journal
of Visual Communication and Image Representation, vol. 20, no. 1, pp.
28–34, 2009.

[68] S. Tzafestas and N. P. Papanikolopoulos, “Incremental fuzzy expert pid
control,” IEEE Transactions on Industrial Electronics, vol. 37, no. 5,
pp. 365–371, 1990.

[69] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and
T. Roscoe, “Three steps is all you need: Fast, accurate, automatic scaling
decisions for distributed streaming dataflows,” in Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’18. USA: USENIX Association, 2018, p. 783–798.

[70] (2021) Energy aware scheduling, https://www.kernel.org/doc/html/latest/
scheduler/sched-energy.html. Last Accessed: 2021-05-10.

[71] (2021) Beach weather stations - automated sensors , https:
//catalog.data.gov/dataset/beach-weather-stations-automated-sensors/
resource/3b820f68-4dca-4ea7-8141-f37d9237734d. Last Accessed:
2021-11-12.

[72] (2019) Creator of the angry birds game, www.rovio.com. Last Accessed:
2021-05-10.

[73] S. Zhang, Y. Mao, J. He, P. M. Grulich, S. Zeuch, B. He, R. T.
Ma, and V. Markl, “Parallelizing intra-window join on multicores:
An experimental study,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2089–2101.

[74] (2018) Shanghai stock exchange, http://english.sse.com.cn/. Last
Accessed: 2021-11-12.

[75] (2021) Rock pi 4 wiki, https://wiki.radxa.com/Rockpi4. Last Accessed:
2021-05-10.

[76] W. Wolff and B. Porter, “Performance optimization on big.little
architectures: A memory-latency aware approach,” in The 21st ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, ser. LCTES ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 51–61. [Online].
Available: https://doi.org/10.1145/3372799.3394370

[77] H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language
runtimes,” SIGARCH Comput. Archit. News, vol. 42, no. 1, p.
513–528, Feb. 2014. [Online]. Available: https://doi.org/10.1145/
2654822.2541971

[78] T. Somu Muthukaruppan, A. Pathania, and T. Mitra, “Price theory based
power management for heterogeneous multi-cores,” ser. ASPLOS ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
161–176. [Online]. Available: https://doi.org/10.1145/2541940.2541974

[79] J. Gilchrist, “Parallel data compression with bzip2,” in Proceedings of
the 16th IASTED international conference on parallel and distributed
computing and systems, vol. 16, no. 2004. Citeseer, 2004, pp. 559–564.

[80] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[81] M. Milward, J. L. Nunez, and D. Mulvaney, “Design and implementation
of a lossless parallel high-speed data compression system,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, no. 6, pp.
481–490, 2004.

[82] K. Sano, K. Katahira, and S. Yamamoto, “Segment-parallel predictor
for fpga-based hardware compressor and decompressor of floating-
point data streams to enhance memory i/o bandwidth,” in 2010 Data
Compression Conference. IEEE, 2010, pp. 416–425.

[83] J. Tian, S. Di, C. Zhang, X. Liang, S. Jin, D. Cheng, D. Tao, and
F. Cappello, “Wavesz: A hardware-algorithm co-design of efficient
lossy compression for scientific data,” in Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2020, pp. 74–88.

[84] A. Ozsoy and M. Swany, “Culzss: Lzss lossless data compression on
cuda,” in 2011 IEEE International Conference on Cluster Computing.
IEEE, 2011, pp. 403–411.

http://opensource.rock-chips.com/wiki_RK3399
http://opensource.rock-chips.com/wiki_RK3399
https://www.cs.virginia.edu/stream/
https://developer.arm.com/documentation/102202/latest/
https://developer.arm.com/documentation/102202/latest/
https://tonyskyzeng.github.io/downloads/tr_cstream/TR_CSTREAM.pdf
https://tonyskyzeng.github.io/downloads/tr_cstream/TR_CSTREAM.pdf
https://github.com/lz4/lz4/
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1145/2988336.2990475
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://catalog.data.gov/dataset/beach-weather-stations-automated-sensors/resource/3b820f68-4dca-4ea7-8141-f37d9237734d
https://catalog.data.gov/dataset/beach-weather-stations-automated-sensors/resource/3b820f68-4dca-4ea7-8141-f37d9237734d
https://catalog.data.gov/dataset/beach-weather-stations-automated-sensors/resource/3b820f68-4dca-4ea7-8141-f37d9237734d
www.rovio.com
http:// english.sse.com.cn/
https://wiki.radxa.com/Rockpi4
https://doi.org/10.1145/3372799.3394370
https://doi.org/10.1145/2654822.2541971
https://doi.org/10.1145/2654822.2541971
https://doi.org/10.1145/2541940.2541974

[85] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, “Mpc: a massively
parallel compression algorithm for scientific data,” in 2015 IEEE
International Conference on Cluster Computing. IEEE, 2015, pp. 381–
389.

[86] Y. Huang, Y. Li, Z. Zhang, and R. W. Liu, “Gpu-accelerated compression
and visualization of large-scale vessel trajectories in maritime iot
industries,” IEEE Internet of Things Journal, vol. 7, no. 11, pp. 10 794–
10 812, 2020.

[87] M. Burtscher and P. Ratanaworabhan, “pfpc: A parallel compressor for
floating-point data,” in 2009 Data Compression Conference. IEEE,
2009, pp. 43–52.

[88] J. Shun and F. Zhao, “Practical parallel lempel-ziv factorization,” in 2013
Data Compression Conference. IEEE, 2013, pp. 123–132.

[89] F. Knorr, P. Thoman, and T. Fahringer, “ndzip: A high-throughput
parallel lossless compressor for scientific data,” in 2021 Data
Compression Conference (DCC). IEEE, 2021, pp. 103–112.

[90] Y. Dua, V. Kumar, and R. S. Singh, “Parallel lossless hsi compression
based on rls filter,” Journal of Parallel and Distributed Computing, vol.
150, pp. 60–68, 2021.

[91] B. Salami, H. Noori, and M. Naghibzadeh, “Fairness-aware energy
efficient scheduling on heterogeneous multi-core processors,” IEEE
Transactions on Computers, vol. 70, no. 1, pp. 72–82, 2020.

[92] A. Mascitti, T. Cucinotta, and M. Marinoni, “An adaptive, utilization-
based approach to schedule real-time tasks for arm big. little
architectures,” ACM SIGBED Review, vol. 17, no. 1, pp. 18–23, 2020.

[93] X. Li and G. Li, “An adaptive cpu-gpu governing framework for mobile
games on big. little architectures,” IEEE Transactions on Computers,
2020.

	Introduction
	Preliminaries
	Data Stream Compression for IoT
	Asymmetric Multicore Architecture

	Motivation and Design Overview
	Motivations
	Design Overview of CStream

	Fine-grained Decomposition
	Stream Compression Procedure Templates
	Parallelizing Stream Compression Procedures

	Asymmetry-aware Scheduling
	Problem Formulation
	Cost Model
	Estimation of ei
	Estimation of i and i
	Estimation of li

	Model-guided Scheduling
	Adaptive to Dynamic Environment

	Methodology
	Competing Mechanisms
	Input Workloads
	Algorithms
	Datasets

	Instrument of Performance Metrics

	Evaluation
	End-to-End Comparison
	Workload Sensitivity Study
	Procedure Settings
	Data Statistic Properties

	System Configuration Analysis
	Break-down Analysis

	Related Work
	Conclusion
	References

