Overview
@0000

Performance Analysis

Shuhao Zhang

Nanyang Technological University

shuhao.zhang@ntu.edu.sg

June 4, 2024

1/43

Overview
@0000

Recall: Testing for Concurrency

@ Testing for correctness

o Safety: nothing bad ever happens
o Liveness: something good eventually happens (e.g., no
deadlock)

@ Testing for performance

e Throughput: the rate at which a set of concurrent tasks is
completed

o Responsiveness: the delay between a request and completion
of some action

2/43

Overview
(o] Jelele]

Performance: Two Viewpoints

“Program X is better than Program Y"

@ Better = Lower Response Time
o The duration of processing one input is shorter
e E.g., the time of performing a=a+ b in program X is shorter
than in program Y.
o Better = Higher Throughput
e More work can be done in the same duration
e E.g., within the same amount of time, program X performs
a=a+ b for more times than program Y.

3/43

Overview
[e]e] Tele]

Response Time in Sequential Systems

Response time of a program A:
@ User CPU time: time CPU spends for executing program
@ System CPU time: time CPU spends executing OS routines
e Waiting time: /O waiting time and the execution of programs
because of time sharing

We focus on analyzing and reducing User CPU time here.

waiting time: depends on the load of the computer system.
system CPU time: depends on the OS implementation.

4/43

Overview
[e]e]e] o]

User CPU time

o Timeyser(m) = Neycre(m) * Timecyce

® Ngycle(m)=number of cycles needed for executing m
Instructions

o Timecycle=Cycle time of CPU (depends on clock rate)

CPI
@ Note that, instructions may have different execution times.
CPI: cycles per instruction. So, we can estimate the user CPU
time of a program only if we know the CPI of the program.
@ For simplicity, we assume instructions have the same execution
time and CPI=1 in the following discussion.

Latency: User CPU time of handling “one” input.

5/43

Overview
0000e

Throughput: number of instructions executed per unit of

time

@ Suppose a program needs to perform m instructions to handle
a unit of input.

@ And, it handles n unit of inputs (i.e., problem size) in T cycle
time.

mxn

@ Then, its throughput is #F

6/43

Analysis Theory
900000000000 000

Performance vs Complexity

@ One of the primary reasons to use threads is to improve
performance.

@ but techniques for improving performance also increase
complexity and the likelihood of safety and liveness failures.

7/43

Analysis Theory

O@0000000000000

>/ } Common case in real-life
CORES®b | : y

You don't want your parallel
program works like this.

8/43

Analysis Theory
00e000000000000

Parallel Execution Time T,(n)

Time of exchange data among processors, e.g., message

p: processors passing between producer gnd consumer cross NUMA
T3(n) - Ty(n) Tpn(n) &= Tn)
T time of .

n: problem size .

Time of synéﬁronization,
e.g., locks

execution Time of executing local
computations, e.g., sequential

execution in a thread

Question

Can you explain the previous figure with the definition of T,(n)?

9/43

Analysis Theory
000800000000 000

Reduce T,(n)

@ Ts(n) can be reduced by 1) smarter algorithm to bring down
complexity, 2) better cache locality, 3) caching results, and so
on.

@ Tpmn(n) can be reduced by 1) better program design (e.g.,
agglomeration, and thread reuse in executor framework), 2)
better mapping strategy (e.g., NUMA-aware thread mapping),
3) data compression and so on.

@ T(n) can be reduced by 1) reduce critical section scope, 2)
lock splitting/stripping, 3) replace locks and so on.

10/43

Analysis Theory
0000e0000000000

Parallel Program: Speedup

Measure the benefit of parallelism:

Test seq(n)
e Sp(n)= prW
o Where, Tp(n)= Ts(n)+ Tm(n)+ T)(n)

Tbest_ seq(N

@ Theoretically, Ts(n) = —=="— in case of perfectly
partitioning workloads among threads. In such as case,
Sp(n) =p.

e However, due to Tpn(n)+ T;(n), it is usually Sp(n) < p. Hence,
Sp(n) <p.

o Ideally, we aim to let Sy(n) = p when designing parallel
program.

Caution

In practice, Sp(n) > p (superlinear speedup) is possible: it occurs
when workload partitioning reduces total workloads, e.g., better

cache utilization. 11/43

Analysis Theory
0O0000e000000000

Parallel Program Cost: C,(n)

o Cp(n)=p*Tp(n), measures the total amount of work
performed by all processors, i.e. processor-runtime product.
@ A parallel program is cost-optimal if it executes the same
total number of operations as the fastest sequential program,
le., Cp(n) = Tbestiseq(n)'
e However, the synchronization, message passing, waiting, etc
add more operations to a parallel program.

12/43

Analysis Theory
000000800000 000

Parallel Program: Efficiency

@ Actual degree of speedup performance achieved compared to
the maximum

Thest se()
o En(n)=

- Spf,") <100%.

13/43

Analysis Theory
0000000 e0000000

Understanding Scalability

@ Interaction between the size of the problem and the size of the
parallel computer (e.g., number of CPU cores)
e Impact on load balancing, overhead, arithmetic intensity,
locality of data access
o Application dependent

14 /43

Analysis Theory
0000000080 00000

Amdahl's Law

Amdahl’s Law (1967)

Speedup of parallel execution is limited by the fraction of the
algorithm that cannot be parallelized (f).
1

Sp(n): 1—f =
f+7

| =

e f(0=<f=<1)is called the sequential fraction

@ Also known as fixed-workload performance

15/43

Analysis Theory
000000000 e00000

Amdahl’'s Law Illustration

Speedup

20

18

16

14

12

10

Amdahl's Law

Parallel portion
50%
75%
—-— 90%
—— 95%

1
2
4
8
16
32

¥ ®© ©
© N ®
- &

512

<
N
=
-

Number of processors

2048

4096
8192

16384

32768

65536

16 /43

Analysis Theory
0000000000 e0000

Understanding Scalability

e Manufacturers are discouraged from making large parallel
computers

@ More research attention was shifted towards developing
parallelizing compilers that reduces sequential fraction

Really?

Amdahl’s law assumes a fixed problem size.

17/43

Analysis Theory
0000000000000

Understanding Scalability

@ However, f is not necessary a constant in many computing
problems. For example, it can vary depending on the problem
size n, e.g., how many requests need to process concurrently?

@ As a result, f is often a function of n:

f is not a constant

lim f(n)=0

X—00

18/43

Analysis Theory
000000000000 e00

Gustafson's Law (1988)

Gustafson’s Law

Gustafson estimated the speedup Sp(n) of a program gained by
using parallel computing as follows:

Sp(n)=f+(1-F)x*p
=p+(1-p)*f

Implication

Gustafson's law instead proposes that programmers tend to
increase the size of problems to fully exploit the computing power
that becomes available as the resources improve.

19/43

Analysis Theory
000000000000 0e0

Scaling Constraints

@ Application-oriented scaling
o Distribute one client request to one core.
e Split computation into multiple phases and distribute each
phase to one core.
o Problem/application dependent.

@ Resource-oriented scaling

o Problem constrained scaling (PC): use a parallel computer to
solve the same problem faster, e.g., divide the problem into
#Cores pieces.

o Time constrained scaling (TC): completing more work in a
fixed amount of time.

o Memory constrained scaling (MC): run the largest problem
possible without overflowing main memory

20 /43

Analysis Theory
0000000000000 0e

Takehome Question

@ We have previously studied a number of parallel program
patterns.

@ We can utilize those patterns to better design multithread
program rather than from scratch. Furthermore,

@ Think about it: If a program follows a certain pattern, say
the Producer-Consumer pattern, we can then analysis its
efficiency rather easily.

e Why so? Give it a thought.

21/43

Analysis Practice
0000000000000

Metering

Performance Analysis Challenges

@ Experiment with writing and tuning your own parallel
programs
e Many times, we obtain misleading results or tune code for a
workload that is not representative of real-world use cases
@ Start by setting your application performance goals
o Response time, throughput, speedup?
e Determine if your evaluation approach is consistent with these
goals
@ Try the simplest parallel solution first and measure
performance to see where you stand

22/43

Analysis Practice
0000000000000

Metering

How really “good” your program is?

@ Identify appropriate test scenarios — how the class is used

@ Sizing empirically for various bounds, e.g., number of threads,
buffer capabilities, etc.

23/43

Analysis Practice
0000000000000

Metering

Performance Measurement: Identify appropriate test
scenarios

e E.g., if it's a shared queue, you may want to test insert and
delete concurrently.

o If it's a shared stack, test pop and push concurrently.

24 /43

Analysis Practice
000@000000000

Metering

Performance Measurement: Sizing empirically

for (int cap = 1; cap <= 1000; cap *= 10)
System .out. println (" Capacity:," + cap);
for (int pairs = 1; pairs <= 128; pairs x= 2)
System .out.print ("Pairs:," + pairs + "\t");

25 /43

Analysis Practice
0000800000000

Metering

Running Time Measurement

@ Measuring program running time for sequential program is
easy.
o Start Timer(); Program executes(); End Timer().

It is challenging for metering concurrent program.

Ideally, we shall have Start Timer(); Multithreads are running
(); End Timer();

But, each thread runs independently.

To ensure measurement correctness, we need to synchronize
those threads.

26 /43

Analysis Practice
00000@0000000

Metering

General idea of benchmarking concurrent program

thread . ——— “———— Threads are created and started.
wait for
other « | ~_— Starttimer here.
threads . | —
Barrler = Start Timer
~ execute

I -~ End timer here.

Barriec End Timer

27 /43

Analysis Practice
000000@000000

Metering

CyclicBarrier

@ A CyclicBarrier supports an optional Runnable command that
is run once per barrier point, after the last thread in the party
arrives, but before any threads are released.

//when all parties ready, start/end the
BarrierTimer.

final CyclicBarrier cb = new CyclicBarrier
(3, BarrierTimer);

See the BarrierTimer.java

28 /43

Analysis Practice
0000000@00000

Metering

BarrierTimer

public class BarrierTimer implements Runnable {

private boolean started;
private long startTime, endTime;

public synchronized void run() {
long t = System.nanoTime();
if (!started) {
started = true;
startTime = t;
} else
endTime = t;

}

public synchronized void clear () {
started = false;

}

public synchronized long getTime() {
return endTime — startTime;

Not Java?
We can implement our own barrierTimer in other programming

language to achieve the same goal.
guag & 20 /43

-
-

Analysis Practice
00000000 e0000

Metering

Use Case Study 1

@ Let's try to use the barrierTimer to setup a proper testing
framework.

@ We are going to meter the efficiency of different counter
implementations.

30/43

Analysis Practice
0000000008000

Metering

CasCounterTest

public class CasCounterTest {
private BarrierTimer timer = new BarrierTimer();
protected static final ExecutorService pool = Executors.
newCachedThreadPool () ;
//set up the data object here

LockCounter lockCounter = new LockCounter();
protected final int nTrials, nThreads;
protected CyclicBarrier barrier;

protected final int nlncrements = 10000;

Setup the testing framework: the timer and barrier.

31/43

Analysis Practice
0000000000800

Metering

CasCounterTest

class LockCounter {
private int value;

public synchronized int getValue() {

return value;

public synchronized int increment() {
return value++;
public class CasCounterTest {
public CasCounterTest(int nThreads, int trials) {
this.nThreads = nThreads;

this.nTrials = trials;
barrier = new CyclicBarrier(nThreads + 1, timer);

The implementation of lock based counter that we are interested at.

32/43

Analysis Practice
0000000000080

Metering

CasCounterTest

public class CasCounterTest {

public void test() {
try {
timer.clear ();
for (int i = 0; i < nThreads; i++) {
pool.execute(new Runnable() {
public void run() {
try
barrier.await();
for (int i = 0; i < nlncrements; i++) {
//perform the data operation
lockCounter.increment () ;
}
barrier.await();
} catch (InterruptedException |
BrokenBarrierException e) {
e.printStackTrace();

3
bk
barrier.await();//start execution of all threads
barrier.await();//wait for all to finish execution

System .out. print (" Total Time:." + timer.getTime());

} catch (Exception e) {
throw new RuntimeException(e);

}
33/43

Analysis Practice
000000000000 e

Metering

CasCounterTest

public class CasCounterTest {

public static void main(String[] args) throws Exception {

int tpt = 100000;

for (int nThreads = 32; nThreads <= 100; nThreads += 10) {
CasCounterTest t = new CasCounterTest(nThreads, tpt);
System.out.print ("numberyof threads: " + nThreads + "\t");
t.test();
System .out.println ();
Thread.sleep (1000);

CasCounterTest. pool.shutdown () ;

Changing the thread setting and metering.

34 /43

Analysis Practice
©0000000
Profiling

Profiling

@ Sometimes, we are not only interested at knowing how fast the
program is,

o We want to know where the bottleneck is.

35/43

Analysis Practice
0®000000
Profiling

Performance analysis strategy

Determine what limits performance:
o Computation
e Memory bandwidth (or memory latency)
@ Synchronization

Establish the bottleneck

36 /43

Analysis Practice
00800000
Profiling

Possible Bottlenecks

@ Instruction-rate limited: add “math” (non-memory
instructions)

e Does execution time increase linearly with operation count as
math is added?

@ Memory bottleneck: remove almost all math, but load same
data

e How much does execution-time decrease?

@ Locality of data access: change all array accesses to A[Q]
e How much faster does your code get?

@ Sync overhead: remove all atomic operations or locks

o How much faster does your code get? (provided it still does
approximately the same amount of work)

37/43

Analysis Practice

[e]e]e] lelelele}

Profiling

Instrumentation Tools

o Modify the source code, executable or runtime environment to
understand the performance
@ And, it can be tedious suppose we want to know the detailed
performance of every portion of the program
e Say, the program contains 10 methods, how much running
time attribute to each of the method?
o Of course, we can manually insert time measurement codes like
we do before to measure each method, but it is very tedious.
e There are tools to help.

38/43

Analysis Practice

[e]e]e]e] lelele}

Profiling

Intel Vtune

Configure Analysis

INTEL UTUNE PROFILER

e Local Host ~ 0 Hotspots ~ B

identify the most tme consuming funciions and drll down to see time spent on each line
of source code. Focus optimization effrts on hot code for the greatest performance
impact |.eammers

User-Mode Sampling @ Overnead

® Hardware Event-Based Sampling @

‘Speciy and configure your analysis target: an application or a Script fo execute. CPU sampling interval, ms
Application: 5
java ol

] Collectstacks

Application parameters: | Show additional performance insights
0K -UseAdaplveSIZeRolicy XX +UseParallelOIdGC Jar specibb2015 ar -m CON

Details

! Use appiication diectory as working directory

Advanced

e@ B 1>

39/43

Analysis Practice

00000800

Profiling

Intel Vtune

W User [0 system [Synchro... [l Cther o -
Mo.
Par. Insta... ParMarkBitMa... Parall. ParMark... Pa.
PS. UpdateOnlyClo. InstanceKlass:00p_pc_follow_contents ObjArrayKlass::00p_pc_foll...
Par... F iterate | ParC follow_marking_stacks
Com.... PSP: ompact-u do_it

GCT... GCTaskThread::run

thre... thread_native_entry

start... | stari_thread

[SKip... clone

Total

CPU Time; 4808.684s of 5154.815s (93.3%)

Sour
Function Type: System

@ A Flame Graph is a visual representation of the stacks and

stack frames.
@ The width of each box in the graph indicates the percentage
of the function CPU time to total CPU time.

40/ 43

Analysis Practice

00000080
Profiling

Linux Performance Observation Tools

strace

SS Operating System . Hardware oo
lsof \ltrace \ netstat sysdig Various:
pestat\ \ 1]/ / sar /proc
perf 4
pidstat \ \Applications //// / v stat dmesg
N = turbostat
perf | \ System Librarif#// / mpstat rdmsr
ftrace \ \ SysteQ\Call Interface / / / y ¥ / CPU \ ‘
Interconnect
stap 3 Vs N Sockets "/ Scheduler ; CcPU
1;;:9 3 __File Systems TGP/UDP ¥/ <« top ps — | .
(BPF) E \Volume Manager P \ 4 Virtual +1 pidstat Memory | tiptop
3 | Block Device Interface Ethernet\, Memory - Bus perf
/7 e N~ vmstat —
/ evice Drivers s labtop\ DRAM
jostat perf tiptop 1/0 Bus free
iotop Expander Interconnect | /OBridge | iptraf tcpdump numastat
blktrace \
V0 Gorrtr
Interface Transports netstat
| Disk I | Disk | I Swap | P
swapon ethtool lldptool

41/43

Analysis Practice
00000008
Profiling

Perf

@ Modern architectures expose performance counters
o Cache misses, branch mispredicts, IPC, etc
@ Perf tool provides easy access to these counters

perf list — list counters available on the system
perf stat — count the total events

perf record — profile using one event

perf report — Browse results of perf record

42/43

What's More
[]

Contents skipped

o Parallel computing is a complex subject and one module can
hardly cover everything about it.
@ Other related topics that are not covered but are still very
important include:
o “Parallel Algorithms"
o “Thread Safety Design” and
o "Parallel Program Correctness Theoretical Analysis”
@ You are encouraged to do more self-study on those matters, a
new MPE may be proposed to cover them if enough attentions.
@ Next week, we will have the quiz 1 and we will offer some
materials about “parallel hardware” for self-study as the last
topic covered for the first half of the course.
@ And, the second half of the course will focus on “distributed
memory parallel computing”, covered by another faculty.

43/43

	Overview
	Analysis Theory
	Analysis Practice
	Metering
	Profiling

	What's More

