
Overview Analysis Theory Analysis Practice What’s More

Performance Analysis

Shuhao Zhang

Nanyang Technological University

shuhao.zhang@ntu.edu.sg

June 4, 2024

1 / 43

Overview Analysis Theory Analysis Practice What’s More

Recall: Testing for Concurrency

Testing for correctness
Safety: nothing bad ever happens
Liveness: something good eventually happens (e.g., no
deadlock)

Testing for performance
Throughput: the rate at which a set of concurrent tasks is
completed
Responsiveness: the delay between a request and completion
of some action
...

2 / 43

Overview Analysis Theory Analysis Practice What’s More

Performance: Two Viewpoints

A Claim
“Program X is better than Program Y”

Better = Lower Response Time
The duration of processing one input is shorter
E.g., the time of performing a= a+b in program X is shorter
than in program Y.

Better = Higher Throughput
More work can be done in the same duration
E.g., within the same amount of time, program X performs
a= a+b for more times than program Y.

3 / 43

Overview Analysis Theory Analysis Practice What’s More

Response Time in Sequential Systems

Response time of a program A:
User CPU time: time CPU spends for executing program
System CPU time: time CPU spends executing OS routines
Waiting time: I/O waiting time and the execution of programs
because of time sharing

We focus on analyzing and reducing User CPU time here.
waiting time: depends on the load of the computer system.
system CPU time: depends on the OS implementation.

4 / 43

Overview Analysis Theory Analysis Practice What’s More

User CPU time

Timeuser (m) = Ncycle(m) * Timecycle
Ncycle(m)=number of cycles needed for executing m
instructions
Timecycle=Cycle time of CPU (depends on clock rate)

CPI
Note that, instructions may have different execution times.
CPI: cycles per instruction. So, we can estimate the user CPU
time of a program only if we know the CPI of the program.
For simplicity, we assume instructions have the same execution
time and CPI=1 in the following discussion.

Latency
Latency: User CPU time of handling “one” input.

5 / 43

Overview Analysis Theory Analysis Practice What’s More

Throughput: number of instructions executed per unit of
time

Suppose a program needs to perform m instructions to handle
a unit of input.
And, it handles n unit of inputs (i.e., problem size) in T cycle
time.
Then, its throughput is m∗n

T .

6 / 43

Overview Analysis Theory Analysis Practice What’s More

Performance vs Complexity

One of the primary reasons to use threads is to improve
performance.
but techniques for improving performance also increase
complexity and the likelihood of safety and liveness failures.

7 / 43

Overview Analysis Theory Analysis Practice What’s More

A Joke

Common case in real-life
You don’t want your parallel
program works like this.

8 / 43

Overview Analysis Theory Analysis Practice What’s More

Parallel Execution Time Tp(n)

: time of
execution

: processors

: problem size
Time of executing local

computations, e.g., sequential
execution in a thread

Time of exchange data among processors, e.g., message
passing between producer and consumer cross NUMA

Time of synchronization,
e.g., locks

Question
Can you explain the previous figure with the definition of Tp(n)?

9 / 43

Overview Analysis Theory Analysis Practice What’s More

Reduce Tp(n)

Ts(n) can be reduced by 1) smarter algorithm to bring down
complexity, 2) better cache locality, 3) caching results, and so
on.
Tm(n) can be reduced by 1) better program design (e.g.,
agglomeration, and thread reuse in executor framework), 2)
better mapping strategy (e.g., NUMA-aware thread mapping),
3) data compression and so on.
Tl (n) can be reduced by 1) reduce critical section scope, 2)
lock splitting/stripping, 3) replace locks and so on.

10 / 43

Overview Analysis Theory Analysis Practice What’s More

Parallel Program: Speedup

Measure the benefit of parallelism:
Sp(n)= Tbest_seq(n)

Tp(n)

Where, Tp(n)=Ts(n)+Tm(n)+Tl (n)

Theoretically, Ts(n) =
Tbest_seq(n)

p in case of perfectly
partitioning workloads among threads. In such as case,
Sp(n)= p.
However, due to Tm(n)+Tl (n), it is usually Sp(n)< p. Hence,
Sp(n)≤ p.
Ideally, we aim to let Sp(n)= p when designing parallel
program.

Caution
In practice, Sp(n)> p (superlinear speedup) is possible: it occurs
when workload partitioning reduces total workloads, e.g., better
cache utilization. 11 / 43

Overview Analysis Theory Analysis Practice What’s More

Parallel Program Cost: Cp(n)

Cp(n)=p*Tp(n), measures the total amount of work
performed by all processors, i.e. processor-runtime product.
A parallel program is cost-optimal if it executes the same
total number of operations as the fastest sequential program,
i.e., Cp(n)=Tbest_seq(n).

However, the synchronization, message passing, waiting, etc
add more operations to a parallel program.

12 / 43

Overview Analysis Theory Analysis Practice What’s More

Parallel Program: Efficiency

Actual degree of speedup performance achieved compared to
the maximum
Ep(n)= Tbest_seq(n)

Cp(n)
= Sp(n)

p ≤ 100%.

13 / 43

Overview Analysis Theory Analysis Practice What’s More

Understanding Scalability

Interaction between the size of the problem and the size of the
parallel computer (e.g., number of CPU cores)

Impact on load balancing, overhead, arithmetic intensity,
locality of data access
Application dependent

14 / 43

Overview Analysis Theory Analysis Practice What’s More

Amdahl’s Law

Amdahl’s Law (1967)

Speedup of parallel execution is limited by the fraction of the
algorithm that cannot be parallelized (f).

Sp(n)= 1

f + 1−f
p

≤ 1
f

f (0≤ f ≤ 1) is called the sequential fraction
Also known as fixed-workload performance

15 / 43

Overview Analysis Theory Analysis Practice What’s More

Amdahl’s Law Illustration

16 / 43

Overview Analysis Theory Analysis Practice What’s More

Understanding Scalability

Manufacturers are discouraged from making large parallel
computers
More research attention was shifted towards developing
parallelizing compilers that reduces sequential fraction

Really?
Amdahl’s law assumes a fixed problem size.

17 / 43

Overview Analysis Theory Analysis Practice What’s More

Understanding Scalability

However, f is not necessary a constant in many computing
problems. For example, it can vary depending on the problem
size n, e.g., how many requests need to process concurrently?
As a result, f is often a function of n:

f is not a constant

lim
x→∞ f (n)= 0

18 / 43

Overview Analysis Theory Analysis Practice What’s More

Gustafson’s Law (1988)

Gustafson’s Law
Gustafson estimated the speedup Sp(n) of a program gained by
using parallel computing as follows:

Sp(n)= f + (1− f)∗p
= p+ (1−p)∗ f

Implication
Gustafson’s law instead proposes that programmers tend to
increase the size of problems to fully exploit the computing power
that becomes available as the resources improve.

19 / 43

Overview Analysis Theory Analysis Practice What’s More

Scaling Constraints

Application-oriented scaling
Distribute one client request to one core.
Split computation into multiple phases and distribute each
phase to one core.
Problem/application dependent.

Resource-oriented scaling
Problem constrained scaling (PC): use a parallel computer to
solve the same problem faster, e.g., divide the problem into
#Cores pieces.
Time constrained scaling (TC): completing more work in a
fixed amount of time.
Memory constrained scaling (MC): run the largest problem
possible without overflowing main memory

20 / 43

Overview Analysis Theory Analysis Practice What’s More

Takehome Question

We have previously studied a number of parallel program
patterns.
We can utilize those patterns to better design multithread
program rather than from scratch. Furthermore,
Think about it: If a program follows a certain pattern, say
the Producer-Consumer pattern, we can then analysis its
efficiency rather easily.

Why so? Give it a thought.

21 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

Performance Analysis Challenges

Experiment with writing and tuning your own parallel
programs

Many times, we obtain misleading results or tune code for a
workload that is not representative of real-world use cases

Start by setting your application performance goals
Response time, throughput, speedup?
Determine if your evaluation approach is consistent with these
goals

Try the simplest parallel solution first and measure
performance to see where you stand

22 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

How really “good” your program is?

Identify appropriate test scenarios – how the class is used
Sizing empirically for various bounds, e.g., number of threads,
buffer capabilities, etc.

23 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

Performance Measurement: Identify appropriate test
scenarios

E.g., if it’s a shared queue, you may want to test insert and
delete concurrently.
If it’s a shared stack, test pop and push concurrently.
...

24 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

Performance Measurement: Sizing empirically

f o r (i n t cap = 1 ; cap <= 1000 ; cap ∗= 10)
System . out . p r i n t l n (" Capac i t y : ␣" + cap) ;
f o r (i n t p a i r s = 1 ; p a i r s <= 128 ; p a i r s ∗= 2)

System . out . p r i n t (" Pa i r s : ␣" + p a i r s + "\ t ") ;

25 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

Running Time Measurement

Measuring program running time for sequential program is
easy.

Start Timer(); Program executes(); End Timer().

It is challenging for metering concurrent program.
Ideally, we shall have Start Timer(); Multithreads are running
(); End Timer();
But, each thread runs independently.
To ensure measurement correctness, we need to synchronize
those threads.

26 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

General idea of benchmarking concurrent program

27 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

CyclicBarrier

A CyclicBarrier supports an optional Runnable command that
is run once per barrier point, after the last thread in the party
arrives, but before any threads are released.

//when a l l p a r t i e s ready , s t a r t /end the
Ba r r i e rT ime r .

f i n a l C y c l i c B a r r i e r cb = new C y c l i c B a r r i e r
(3 , Ba r r i e rT ime r) ;

Example
See the BarrierTimer.java

28 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

BarrierTimer
p u b l i c c l a s s Ba r r i e rT ime r implements Runnable {

p r i v a t e boo l ean s t a r t e d ;
p r i v a t e l ong s ta r tT ime , endTime ;

p u b l i c s y n c h r o n i z e d vo i d run () {
l ong t = System . nanoTime () ;
i f (! s t a r t e d) {

s t a r t e d = t r u e ;
s t a r tT ime = t ;

} e l s e
endTime = t ;

}

p u b l i c s y n c h r o n i z e d vo i d c l e a r () {
s t a r t e d = f a l s e ;

}

p u b l i c s y n c h r o n i z e d l ong getTime () {
r e t u r n endTime − s t a r tT ime ;

}
}

Not Java?
We can implement our own barrierTimer in other programming
language to achieve the same goal.

29 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

Use Case Study 1

Let’s try to use the barrierTimer to setup a proper testing
framework.
We are going to meter the efficiency of different counter
implementations.

30 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

CasCounterTest

p u b l i c c l a s s CasCounterTest {
p r i v a t e Ba r r i e rT ime r t ime r = new Ba r r i e rT ime r () ;
p r o t e c t e d s t a t i c f i n a l E x e c u t o r S e r v i c e poo l = Execu to r s .

newCachedThreadPool () ;
// s e t up the data o b j e c t he r e
LockCounter l o ckCoun t e r = new LockCounter () ;
p r o t e c t e d f i n a l i n t nT r i a l s , nThreads ;
p r o t e c t e d C y c l i c B a r r i e r b a r r i e r ;
p r o t e c t e d f i n a l i n t n Inc r ement s = 10000;
. . .

Setup the testing framework: the timer and barrier.

31 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

CasCounterTest

c l a s s LockCounter {
p r i v a t e i n t v a l u e ;

p u b l i c s y n c h r o n i z e d i n t ge tVa lue () {
r e t u r n v a l u e ;

}

p u b l i c s y n c h r o n i z e d i n t i n c r ement () {
r e t u r n v a l u e++;

}
}
p u b l i c c l a s s CasCounterTest {

. . .
p u b l i c CasCounterTest (i n t nThreads , i n t t r i a l s) {

t h i s . nThreads = nThreads ;
t h i s . nT r i a l s = t r i a l s ;
b a r r i e r = new C y c l i c B a r r i e r (nThreads + 1 , t ime r) ;

}
. . .

The implementation of lock based counter that we are interested at.

32 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

CasCounterTest
p u b l i c c l a s s CasCounterTest {

. . .
p u b l i c v o i d t e s t () {

t r y {
t ime r . c l e a r () ;
f o r (i n t i = 0 ; i < nThreads ; i++) {

poo l . e x e cu t e (new Runnable () {
p u b l i c v o i d run () {

t r y {
b a r r i e r . awa i t () ;
f o r (i n t i = 0 ; i < n Inc r ement s ; i++) {

// per fo rm the data o p e r a t i o n
l o ckCoun t e r . i n c r ement () ;

}
b a r r i e r . awa i t () ;

} ca tch (I n t e r r u p t e dE x c e p t i o n |
B r o k enBa r r i e rE x c ep t i o n e) {

e . p r i n t S t a c kT r a c e () ;
}

}
}) ;

}
b a r r i e r . awa i t () ; // s t a r t e x e c u t i o n o f a l l t h r e a d s
b a r r i e r . awa i t () ; // wa i t f o r a l l to f i n i s h e x e c u t i o n
System . out . p r i n t (" Tota l ␣Time : ␣" + t ime r . getTime ()) ;

} ca tch (Excep t i on e) {
throw new Runt imeExcept ion (e) ;

}
}
. . .

33 / 43

Overview Analysis Theory Analysis Practice What’s More

Metering

CasCounterTest

p u b l i c c l a s s CasCounterTest {
. . .
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) throws Excep t i on {

i n t t p t = 100000;
f o r (i n t nThreads = 32 ; nThreads <= 100 ; nThreads += 10) {

CasCounterTest t = new CasCounterTest (nThreads , t p t) ;
System . out . p r i n t ("number␣ o f ␣ t h r e ad s : ␣" + nThreads + "\ t ") ;
t . t e s t () ;
System . out . p r i n t l n () ;
Thread . s l e e p (1000) ;

}
CasCounterTest . poo l . shutdown () ;

}
. . .

Changing the thread setting and metering.

34 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Profiling

Sometimes, we are not only interested at knowing how fast the
program is,
We want to know where the bottleneck is.

35 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Performance analysis strategy

Determine what limits performance:
Computation
Memory bandwidth (or memory latency)
Synchronization

Establish the bottleneck

36 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Possible Bottlenecks

Instruction-rate limited: add “math” (non-memory
instructions)

Does execution time increase linearly with operation count as
math is added?

Memory bottleneck: remove almost all math, but load same
data

How much does execution-time decrease?
Locality of data access: change all array accesses to A[0]

How much faster does your code get?
Sync overhead: remove all atomic operations or locks

How much faster does your code get? (provided it still does
approximately the same amount of work)

37 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Instrumentation Tools

Modify the source code, executable or runtime environment to
understand the performance
And, it can be tedious suppose we want to know the detailed
performance of every portion of the program

Say, the program contains 10 methods, how much running
time attribute to each of the method?
Of course, we can manually insert time measurement codes like
we do before to measure each method, but it is very tedious.
There are tools to help.

38 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Intel Vtune

39 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Intel Vtune

A Flame Graph is a visual representation of the stacks and
stack frames.
The width of each box in the graph indicates the percentage
of the function CPU time to total CPU time.

40 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Linux Performance Observation Tools

41 / 43

Overview Analysis Theory Analysis Practice What’s More

Profiling

Perf

Modern architectures expose performance counters
Cache misses, branch mispredicts, IPC, etc

Perf tool provides easy access to these counters
perf list – list counters available on the system
perf stat – count the total events
perf record – profile using one event
perf report – Browse results of perf record

42 / 43

Overview Analysis Theory Analysis Practice What’s More

Contents skipped

Parallel computing is a complex subject and one module can
hardly cover everything about it.
Other related topics that are not covered but are still very
important include:

“Parallel Algorithms”
“Thread Safety Design” and
“Parallel Program Correctness Theoretical Analysis”

You are encouraged to do more self-study on those matters, a
new MPE may be proposed to cover them if enough attentions.
Next week, we will have the quiz 1 and we will offer some
materials about “parallel hardware” for self-study as the last
topic covered for the first half of the course.
And, the second half of the course will focus on “distributed
memory parallel computing”, covered by another faculty.

43 / 43

	Overview
	Analysis Theory
	Analysis Practice
	Metering
	Profiling

	What's More

