
Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Parallel Program Design Patterns

Shuhao Zhang

Nanyang Technological University

shuhao.zhang@ntu.edu.sg

June 4, 2024

1 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Objectives

After understanding of the correctness issues, synchronization
techniques, and performance optimization techniques,
You shall be ready to design your own “parallel program" from
scratch.
And, how? We will see multiple design patterns of parallel
program that you may take as reference.

2 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Overview

A parallel programming pattern provides a coordination structure
for tasks:

similar to design patterns from Software Engineering

Implication
Design a parallel program following a certain pattern makes
both the development and analysis easier.
Some frameworks or libraries provide APIs that force users to
follow certain patterns in developing applications. For
example, MapReduce (hadoop).

3 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Outline

We will go through the following patterns:
Task Pool
Fork-Join
Parbegin–Parend
SIMD/SPMD
Pipeline
Master-Worker
Client-Server
Producer-Consumer

4 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Task Pool

Task (Work) Pools

A common data structure from which threads can access to
retrieve tasks for execution

Number of threads can be tuned dynamically, e.g.,
newCachedThreadPool
During the processing of a task, a thread can generate new
tasks and insert them into the task pool

5 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Task Pool

Task (Work) Pools (cont’d)

Access to the task pool must be synchronized to avoid race
conditions
Execution of a parallel program is completed when

Task pool is empty
Each thread has terminated the processing of its last task

Advantages:
Useful for adaptive and irregular applications as tasks can be
generated dynamically

Disadvantages:
For fine-grained tasks, the overhead of retrieval and insertion
of tasks becomes significant. Access to the task pool must be
synchronized to avoid race conditions.

6 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Fork-Join

7 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Fork-Join

Task T creates a number of child tasks T1 ,..., Tm with a fork
statement.

Child tasks work in parallel and execute a given program part
or function
Task T can execute the same or a different program part or
function

Task T waits for the termination of T1,..., Tm by a join call
Implementation: Language construct or a library function such
as Pthreads, OpenMP and MPI-2

8 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Fork-Join Pseudocode

So l v e (problem) :
i f problem i s sma l l enough :

s o l v e problem d i r e c t l y (s e q u e n t i a l
a l g o r i t hm)

e l s e :
f o r p a r t i n s u b d i v i d e (problem)

f o r k sub ta sk to s o l v e (pa r t)
j o i n a l l s u b t a s k s spawned i n p r e v i o u s l oop
r e t u r n combined r e s u l t s

Remark
Why a “Join” is required?

9 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Fork Operation

Fork creates a child thread
What does the child do?
Typically, fork operates by assigning the child thread with
some piece of “work”
Child thread performs the piece of work and then exits by
calling join with the parent
Child work is usually specified by providing the child with a
function to call on startup
Nature of the child work relative to the parent is not specified

10 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Join Operation

Join informs the parent that the child has finished
Child thread notifies the parent and then exits

Might provide some status back to the parent
Parent thread waits for the child thread to join

Continues after the child thread joins
Two scenarios

1. Child joins first, then parent joins with no waiting
2. Parent joins first and waits, child joins and parent then
continues

11 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Parbegin–Parend

When an executing thread reaches a “parbegin–parend”
construct, a set of threads is created and the statements of
the construct are assigned to these threads for execution
The statements following the parbegin–parend construct are
only executed after all these threads have finished their work

Remark
Essentially, a special form of “Fork-Join". It is less powerful as it
only applies when program is well structured. However, it is
sometimes very convenient to use.

Common Usage
Mostly used by language construct or compiler directives, e.g.,
OpenMP 12 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Parbegin-Parend Classical Example: Matrix Multiplication

Figure: n by n square matrix multiplication

f o r i ← 0 to n−1
f o r j ← 0 to n−1

c [i , j] ← 0
f o r k ← 0 to n−1

c [i , j] ← c [i , j] + a [i , k] x b [k , j]

How to parallelize the program?
13 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Parbegin-Parend Classical Example: Matrix Multiplication

Figure: n by n square matrix multiplication

f o r i ← 0 to n−1
f o r j ← 0 to n−1

c [i , j] ← 0
f o r k ← 0 to n−1

c [i , j] ← c [i , j] + a [i , k] x b [k , j]

Key idea: Iterations of the for loop can be executed in parallel by a
group threads 14 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Fork-Join

Example: Parallel For in OpenMP

15 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

SIMD/SPMD

SIMD

Single instructions are executed
synchronously by the different
threads on multiple data
Implementation:

SSE (Streaming SIMD
Extensions) Instruction on intel
processor
Graphic Processing Units (GPUs)

16 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

SIMD/SPMD

SPMD

Same program executed on different processors
but operate on different data
All threads have equal rights and different
threads work asynchronously with each other
Different threads may execute different parts of
the parallel program because of:

Different speeds of the executing processors
Control statement in program, e.g., If statement

Figure:
Telphone
operators

"

You may also view Mappers/Reducers in MapReduce framework as
SPMD.

17 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

SIMD/SPMD

SIMD/SPMD Application

SIMD/SPMD model is particularly appropriate for problems
with a regular, predictable communication pattern.

MATLAB supports SPMD blocks.
Often adopted for GPU Programming

Notes
If you are interested for GPU programming, please self-study CUDA.

18 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Pipeline

Concept of Pipeline

Figure: A pipeline is a linear sequence of stages

Data flows through the pipeline
From Stage 1 to the last stage
Each stage performs some task, where inputs are results from
the previous stage
Data is thought of as being composed of units
Each data unit can be processed separately in pipeline

19 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Pipeline

Pipelining

Data in the application is partitioned into a stream of data
elements that flows through the each of the pipeline tasks one
after the other to perform different processing steps

A form of functional parallelism: Stream parallelism

Important Implementation: Apache Storm, Apache Flink –
Stream Processing Engines

20 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Pipeline

Pipelining Illustration

Figure: It also be used to link multiple programs working concurrently.

21 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Pipeline

Pipeline Model: Example1

Consider 3 data units and 4 tasks (stages)

Figure: Assuming 4 tasks (stages)

Sequential pipeline execution (no parallel execution)

1credit:university of oregon,
https://ipcc.cs.uoregon.edu/lectures/lecture-10-pipeline.pdf

22 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Pipeline

Pipeline Model: Example

We can provide a separate pipeline for each data item

What do you notice as we increase the number of data items?

23 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Pipeline

Pipeline Model: Example

The number of data items determine the maximum parallelism.

Two parallel approach here:
processor executes the entire pipeline
processor assigned to a single task

which one is better?

24 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Master-Worker

Master-Worker Pattern

A single program (master) controls the execution of the
program

Master executes the main function
Assigns work to slave threads to perform computations

Master task:
Generally responsible for coordination and perform
initializations, timings, and output operations

Worker task:
Wait for instruction from master task

25 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Master-Worker

Master-Worker Pattern

26 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Master-Worker

Master–Slave (or Master–Worker)

A single program (master) controls
the execution of the program

Master executes the main
function
Assigns work to slave threads to
perform the actual computations

Master task:
Generally responsible for coordination and perform
initializations, timings, and output operations.

Slave task:
Wait for instruction from master task

Important Implementation: Google MapReduce, Hadoop,
Spark system.

27 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Master-Worker

Master Thread

p u b l i c c l a s s Master {
p r i v a t e i n t s l a v eCoun t = 10 ;
p r i v a t e Workload work load = new Workload () ;
p r i v a t e S l a v e [] s l a v e s = new S l a v e [s l a v eCoun t] ;
p u b l i c v o i d run () {

f o r (i n t i = 0 ; i < s l a v eCoun t ; i++) {
s l a v e s [i] = new S l a v e (work load) ; // c r e a t e s l a v e s

}
f o r (i n t i = 0 ; i < s l a v eCoun t ; i++) {

s l a v e s [i] . s t a r t () ; // s t a r t s l a v e s
}
f o r (i n t i = 0 ; i < s l a v eCoun t ; i++) {

t r y {
s l a v e s [i] . j o i n () ; // wa i t f o r s l a v e s to s top

} ca tch (I n t e r r u p t e dE x c e p t i o n i e) {
System . e r r . p r i n t l n (i e . getMessage ()) ;

} f i n a l l y {
System . out . p r i n t l n (s l a v e s [i] . getName () + "␣has ␣ s topped ") ;

}
}
System . out . p r i n t l n ("The␣master ␣ w i l l ␣now␣ s top ␣ . . . ␣") ;

}
}

28 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Master-Worker

Slave Thread

c l a s s S l a v e ex t end s Thread {
p r i v a t e Workload work load ;
p r i v a t e boo l ean done = f a l s e ;
p u b l i c S l a v e (Workload work load) {

t h i s . work load = work load ;
}
p r o t e c t e d boo l ean work () {
// per fo rm some work tha t r educ e s the work load .
}

p u b l i c v o i d run () {
wh i l e (! done) {

done = work () ;
// be c o o p e r a t i v e :

t r y {
Thread . s l e e p (1000) ;

}// s l e e p f o r 1 s ec .
ca tch (Excep t i on e) {}

}
}

}

29 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Client-Server

Client-Server

Server compute requests from multiple client tasks
concurrently

Can use multiple threads to compute a single request
A task can generate requests to other tasks (client role) and
process requests from other tasks (server role)
Useful in heterogeneous systems such as cloud and grid
computing

30 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Client-Server

Client-Server

MPMD (multiple program multiple data) model
Server compute requests from multiple client tasks
concurrently

Can use multiple threads to compute a single request?

A task can generate requests to other tasks (client role) and
process requests from other tasks (server role)

Useful in heterogeneous systems
such as cloud and grid computing

Reverse to master-worker: requests are
sent from clients (workers).

31 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Producer-Consumer

Producer-Consumer Illustration

32 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Producer-Consumer

Producer-Consumer Pattern

Producer-Consumer patterns are very common in programs;
Usually some kind of buffering is involved between P and C;
The buffer can be implemented as a blocking queue.

33 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Producer-Consumer

Producer–Consumer

Producer threads produce data which are used as input by
consumer threads

Synchronization has to be used to ensure a correct
coordination between producer and consumer threads

34 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Producer-Consumer

Producer–Consumer: Shared Buffers

35 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Producer-Consumer

Block Queue

Blocking queues are a powerful resource management tool for
building reliable applications: they make your program more
robust to overload by throttling activities that threaten to
produce more work than can handled.
Blocking queues are typically used in implementing the
producer-consumer pattern

36 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Executor Framework

Java provides a fairly easy mechanism to write parallel
program with task pool parallel pattern.
Called - Executor Framework.

37 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Executor Framework

Instead of manually handle the assignment & orchestration &
mapping.

Partition is still designed by developers.

A easier way is to rely on the executor framework
Once you define the tasks (Runable), you can let the executor
framework to schedule the tasks to run in parallel and the
JVM will take care of the rest – a short-cut
A nice application of the task pool parallel programming
pattern

38 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Executor Framework

The executor framework offers flexible thread pool
management
Executor provides a standard means of decoupling task
submission from task execution.

The Runnable is the task itself.
The method execute defines how it is executed.

39 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Example Task Pool Implementation: Java Thread Pool
Executor

The executor will assign task to the 5 threads:
After a thread finishes its task, another task from the pool will
be assigned

40 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

How Executor Framework Works

41 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

How Executor Framework Works

42 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Advantage of Applying Executor Framework

Reusing an existing thread; reduce thread creation and
teardown costs.
No latency associated with thread creation; improves
responsiveness.

Tuneable
By properly tuning the size of the thread pool, you can have
enough threads to keep the processors busy while not having so
many that your application runs out of memory or thrashes due to
competition among threads for resources

43 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

When to Use Executor Framework?

Executor Framework work best when tasks are homogeneous and
independent.

Dependency between tasks in the pool creates constraints on
the execution policy which might result in problems (deadlock,
liveness hazard, etc.)

It is still developers’ responsibility to ensure program
correctness.

Long-running tasks may impair the responsiveness of the
service managed by the Executor.

Especially when task queue is bounded.
Reusing threads create channels for communication between
tasks – risky to use them.

To be sure, you may enforce “violate” for example.
44 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Executor Lifecycle

Shut down an Executor through ExecutorService

p u b l i c i n t e r f a c e E x e c u t o r S e r v i c e e x t end s Executo r {
vo i d shutdown () ;
L i s t <Runnable> shutdownNow () ;
boo l ean isShutdown () ;
boo l ean i sTe rm ina t ed () ;
boo l ean awa i tTe rm ina t i on (l ong t imeout ,

TimeUnit u n i t)
throws I n t e r r u p t e dE x c e p t i o n ;

// a d d i t i o n a l c onven i en c e methods f o r t a s k
subm i s s i o n

}

45 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

shutdown() vs shutdownNow()

shutdown()
will just tell the executor service that it can’t accept new tasks,
but the already submitted tasks continue to run

shutdownNow()
will do the same AND will try to cancel the already submitted
tasks by interrupting the relevant threads. Note that if your
tasks ignore the interruption, shutdownNow() will behave
exactly the same way as shutdown().

46 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Different Built-in Executor Frameworks

newFixedThreadPool
Fixed-size thread pool; creates threads as tasks are submitted,
up to the maximum pool size and then attempts to keep the
pool size constant

newCachedThreadPool
Boundless, but the pool shrinks and grows when demand
dictates so

newSingleThreadExecutor
A single worker thread to process tasks, sequentially according
to the order imposed by the task queue

newScheduledThreadPool
A fixed-size thread pool that supports delayed and periodic
task execution.

47 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Tuning the Thread Pools

The ideal size for a thread pool depends on the types of tasks
and the deployment system

If it is too big, resource saturate
If it is too small, throughput suffers

Heuristics
For compute intensive tasks, N+1 threads for a N-processor
system
For tasks including I/O or other blocking operations, you want
a larger pool

48 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Optimal CPU Utilization

Given these definitions:
N = number of CPUs (e.g., 4)
U = target CPU utilization (e.g., 1)
W/C = ratio of wait time to compute time (e.g., 0)

The optimal pool size is:
M = N * U * (1 + W/C) (e.g., 4*1*1)

The number of CPUs can be obtained by:
Runtime.getRuntime().availableProcessors()

49 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

More Than CPUs

Other resources that can contribute to sizing constraints are
memory, file handles, socket handles, database connections,
etc.

Add up how much of those resources each task requires and
divide that into the total quantity available.

Alternatively, the size of the thread pool can be tuned by
running the application using different pool sizes and observing
the level of CPU and other resource utilization.

50 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

FYI: Design Our Own Executor

Decoupling submission from execution is that it lets you specify the
execution policy for a given class of tasks.

In what thread will tasks be executed?
In what order should tasks be executed (FIFO)?
How many tasks may execute concurrently?
How many tasks may be queued pending execution?
If a task has to be rejected because the system is overloaded,
which task should be selected and how the application be
notified?
What actions should be taken before or after executing a task?

FYI: https://www.geeksforgeeks.org/
customthreadpoolexecutor-in-java-executor-framework/

51 / 64

https://www.geeksforgeeks.org/customthreadpoolexecutor-in-java-executor-framework/
https://www.geeksforgeeks.org/customthreadpoolexecutor-in-java-executor-framework/

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

OpenMP

OpenMP is a simple, powerful way to write shared memory
programs.
Start with sequential code and parallelize it using #pragma
omp compiler directives.
Incremental parallelization – make existing program parallel bit
by bit.
Initially, a single master thread exists.
Parallel regions (sections of code) can be executed by a team
of threads.
Compiler takes care of creating and coordinating threads.
Available for C / C++ and Fortran. Documentation at
http://openmp.org/wp/openmp-specifications/

52 / 64

http://openmp.org/wp/openmp-specifications/

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Parallel Regions

The parallel directive forks a team of threads, each of which
executes the following region, enclosed in {...}.
Threads join at the end of the parallel region, and execution
resumes with the single master thread.
Number of threads can be set by:

num_threads clause after the parallel directive.
omp_set_num_threads() library routine.
Environment variable OMP_NUM_THREADS.

Recommendation is one thread per processor/core.
Threads can do the work in the region in parallel.
Threads can do different things based on thread ID.
Threads can share work using for, sections, task, etc.
directives.
Parallel regions can be nested. 53 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Work Sharing

Share some work inside a parallel region among threads.
For example, for construct inside a parallel region partitions
iterations of the loop among the threads.

#pragma omp for
for(i=0; i<n; i++) {do_stuff(i);}

The way in which iterations are assigned to threads can be
specified by an additional schedule clause.
Does not start a new team of threads - that is done by an
enclosing parallel construct.
Implicit barrier at the end of the construct unless a nowait
clause is included.

#pragma omp for nowait
for(i=0; i<n; i++) {do_stuff(i);}

54 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Schedule Clause

Used for assigning iterations of parallel for to threads.
schedule(static[,chunk])

Each thread gets a chunk of iterations of size “chunk” – by
default chunks are approximately equal.
Chunks assigned in round-robin order.

schedule(dynamic[,chunk])
Each time a thread finishes its iterations, it grabs “chunks”
more iterations, until all have been executed – default is 1.
Dynamic scheduling has some overhead, but can result in
better load balancing if iterations are not all equal sized.

55 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Schedule Clause

schedule(guided[,chunk])
Each thread dynamically grabs iterations where the size starts
large and shrinks down to “chunk”.
Dynamic load balancing with less overhead.

schedule(runtime)
Schedule type and chunk size taken from the OMP_SCHEDULE
environment variable.

56 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Combined Parallel for

If a parallel directive is followed by a single for directive, they
can be combined.

#pragma omp parallel for schedule(static)
for (i=0; i<n; i++) {

a[i] = a[i] + b[i];
}

Several restrictions on the structure of the loop:
Number of iterations n must not change.
Loop increment must be fixed.
Must not exit loop prematurely (with break, goto, throw).

Purpose of restrictions is so the amount of work in the loop
can be determined at the start.

57 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Other Work Sharing Constructs

Sections construct
Each thread assigned some sections of work.
An implicit barrier at the end of the sections block. Can be
turned off using nowait.
Each thread is responsible for some (possibly 0) sections.

#pragma omp parallel {
#pragma omp sections {

#pragma omp section
structured -block
#pragma omp section
structured -block

}
}

58 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Other Work Sharing Constructs

Single construct
Structured block is executed by one thread of the parallel
region only.
Barrier implied unless nowait is used.

#pragma omp single
structured -block

Master construct
Structured block is executed by the master thread only (no
implicit barrier).

#pragma omp master
structured -block

59 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Synchronization Constructs

Critical sections
Only one thread can execute the associated structured block at
a time.
Name can be used to identify the critical section. Critical
sections with no name default to the same.

#pragma omp critical [name]
structured -block

Atomic operations
Only one thread can execute the associated
expression-statement at a time.
Only works for simple statements such as x++, max, test&set,
etc.
More efficient than a critical section, done in hardware.

#pragma omp atomic
expression -statement

60 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Synchronization Constructs

Barriers
All threads must reach the barrier before any can proceed.
Make sure all threads always hit the barrier. Otherwise some
threads can block.

#pragma omp barrier

Ordered statements
Used in for and parallel for constructs to cause the
structured block to be executed in strict loop order.

#pragma omp ordered
structured -block

Flushing values
flush(variable-list) writes listed variables to memory to
ensure memory consistency (see manual).

#pragma omp flush(variable -list)

61 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Data Environment

OpenMP has a shared memory programming model.
Most variables are shared by default.
Some variables are private by default:

Loop index of for / parallel for construct.
Stack variables (e.g. function argument or local variable)
created during execution of a parallel region.

Variable status can be changed using the following clauses in
parallel regions and worksharing constructs, except shared
which only applies to parallel regions.

shared(variable-list)
private(variable-list)

62 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Data Environment

Reduction combines values from threads.
reduction(op : variable-list)
Variables in the list must be shared in
the enclosing parallel region.
Each thread initially makes a local copy
of each list variable and updates it.
Local copies are reduced into a single
global copy at the end of the construct.
More efficient than using a critical
section.

#pragma omp parallel for
reduction (+ : x)

for (i=0; i<n; i++) {
x = x + a[i];

}
#pragma omp parallel for
for (i=0; i<n; i++) {

#pragma omp critical
{

x = x + a[i];
}

}

63 / 64

Parallel Program Patterns Case Study of Task Pool Case Study of Parbegin–Parend

Runtime Execution

Runtime functions
Locks: omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock().
Runtime environment routines: omp_set_num_threads(),
omp_get_num_threads(), omp_get_thread_num(),
omp_num_procs().

Environment variables
Behavior of omp for schedule(RUNTIME).
OMP_SCHEDULE schedule[, chunk_size].
Set the default number of threads to use: OMP_NUM_THREADS
n.

64 / 64

	Parallel Program Patterns
	Task Pool
	Fork-Join
	SIMD/SPMD
	Pipeline
	Master-Worker
	Client-Server
	Producer-Consumer

	Case Study of Task Pool
	Case Study of Parbegin–Parend

