
Overview Improves Concurrency Improves Resource Utilization

Parallel Program Optimization

Shuhao Zhang

Nanyang Technological University

shuhao.zhang@ntu.edu.sg

June 4, 2024

1 / 57

Overview Improves Concurrency Improves Resource Utilization

Parallel Program Optimization

The optimization of parallel programs can be tedious.
Different optimization targets: total execution time,
energy-efficiency, resource utilization, minimize latency
violation, better scalability, etc.
Different optimization strategies lead to tradeoffs among:
more parallelism vs. more chances of bugs, e.g., deadlocks;
closer to optimization target vs. programming/code
maintenance complexity;

2 / 57

Overview Improves Concurrency Improves Resource Utilization

The Optimization of Parallel Programs

We discussed various mechanism to:
1 [“Open source”: Improves Concurrency] handling lock

contentions to gain higher concurrency
2 [“Reduce expenditure”: Improves Resource Utilization]

improve resource utilization to reduce computing resource
wastage

Figure: Open source and reduce expenditure

3 / 57

Overview Improves Concurrency Improves Resource Utilization

Lock is bad

The ratio of scheduling overhead to useful work can be quite
high when the lock is frequently contended – due to context
switch and scheduling delays.
A thread with the lock may be delayed (due to a page fault,
scheduling delay, etc.).
Locking is simply a heavyweight mechanism for simple
operations like count++.

4 / 57

Overview Improves Concurrency Improves Resource Utilization

Lock is bad: Cost Introduced by Threads

Context switching: requires saving the execution context of
the currently running thread and restoring the execution
context of the newly scheduled thread

CPU time spent on JVM/OS
Cache misses
Costs about 5,000 to 10,000 clock cycles

Memory synchronization:
Memory barriers inhibit compiler optimization
Apart from using locks, we can also use violate keyword to
achieve memory synchronization in Java.
FYI: In C/C++, we can use “memory_fence” statement.

Waiting time:
a thread maybe blocked from execution due to locks leading to
waiting time (or synchronization time)

5 / 57

Overview Improves Concurrency Improves Resource Utilization

Lock is bad: Lock/Release Cost

Access to resources guarded by an exclusive lock is serialized – one
thread at a time delay may access it.

Example
A naive execution would require and release the lock on the vector
four times in the following example. It can get much worse with
lock contention (i.e., multiple threads access to the vector).

p u b l i c S t r i n g getNames () {
L i s t <St r i ng> names = new Vector<St r i ng >() ;
names . add (‘ ‘ A l i c e ’ ’) ;
names . add (‘ ‘ Bob ’ ’) ;
names . add (‘ ‘ Ca r l ’ ’) ;
r e t u r n names . t o S t r i n g () ;

}

Question
How to revise it?

6 / 57

Overview Improves Concurrency Improves Resource Utilization

Lock Contention

Two factors influence the likelihood of contention for a lock
How long it is held once acquired
How often that lock is requested

7 / 57

Overview Improves Concurrency Improves Resource Utilization

Dealing with Lock Contention Overview

There are three common ways to deal with lock contention
1 Reduce the duration for which locks are held
2 Reducing lock granularity
3 Replace exclusive locks with coordination mechanisms that

permit greater concurrency

8 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Duration

Reduce Lock Duration

Reduce the duration for which locks are held is a common approach
to improve efficiency of parallel program.

9 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Duration

Example: User Location Matches

Assuming a simple program to determine if a user is at a
location.
Suppose we have implemented a userLocationMatches
method...

10 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Duration

Narrowing Lock Scope

p u b l i c c l a s s ReduceLockScope {
//@GuardedBy (‘ ‘ t h i s ’ ’)
p r i v a t e f i n a l Map<St r i ng , S t r i ng> a t t r i b u t e s = new HashMap<

St r i ng , S t r i ng >() ;
p u b l i c s y n c h r o n i z e d boo l ean use rLoca t i onMatche s (S t r i n g name ,

S t r i n g regexp) {
S t r i n g key = ‘ ‘ u s e r s . ’ ’ + name + ‘ ‘ . l o c a t i o n ’ ’ ;
S t r i n g l o c a t i o n = a t t r i b u t e s . ge t (key) ;
i f (l o c a t i o n == n u l l) {

r e t u r n f a l s e ;
}
e l s e {

r e t u r n Pa t t e rn . matches (regexp , l o c a t i o n) ;
}

}
}

Question
Which part(s) are in critical section? See ReduceLockScope.java.

11 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Duration

Narrowing Lock Scope

The entire process of execution of the method holds a lock
The only operation that really needs to ensure synchronization
is the

String location = attributes.get (key);

So most of the holding time is wasted.

12 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Duration

Narrowing Lock Scope Revised

p u b l i c c l a s s ReduceLockScope_rev i sed {
//@GuardedBy (‘ ‘ t h i s ’ ’)
p r i v a t e f i n a l Map<St r i ng , S t r i ng> a t t r i b u t e s = new HashMap<St r i ng ,

S t r i ng >() ;

p u b l i c boo l ean u se rLoca t i onMatche s (S t r i n g name , S t r i n g regexp) {
S t r i n g key = " u s e r s . " + name + " . l o c a t i o n " ;
S t r i n g l o c a t i o n ;
s y n c h r o n i z e d (t h i s) {

l o c a t i o n = a t t r i b u t e s . ge t (key) ;
}
i f (l o c a t i o n == n u l l) {

r e t u r n f a l s e ;
} e l s e {

r e t u r n Pa t t e rn . matches (regexp , l o c a t i o n) ;
}

}
}

Question
Why it helps? See ReduceLockScope_revised.java. We will come
back to this in Tutorial.

13 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Duration

Summary of Reducing Lock Duration

While shrinking synchronized blocks can improve scalability, a
synchronized block can’t be too small

operations that need to be atomic (such updating multiple
variables that participate in an invariant) must be contained in
a single synchronized block.
recall the “compound action” examples we have seen earlier?

And, because the cost of synchronization is non-zero, breaking
one synchronized block into multiple synchronized blocks
(correctness permitting) at some point becomes
counterproductive in terms of performance.
The ideal balance is of course platform-dependent, but in
practice it makes sense to worry about the size of a
synchronized block only when you can move “substantial”
computation or blocking operations out of it.

14 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Reduce Lock Granularity

Another way to reduce the holding time of locks is to reduce
the frequency with which threads request locks (thus reducing
the possibility of contention).
This can be achieved by techniques such as lock
decomposition/splitting and lock segmentation, in which a
plurality of mutually independent locks are used to protect
independent state variables, thus changing the situation that
these variables were previously protected by a single lock.
These technologies can reduce the granularity of lock
operation and achieve higher scalability. However, the more
locks are used, the higher the risk of deadlock.

luckily though, you are now masters to deal with deadlock ;)

15 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Motivating Example: Synchronized Classes

Why is this not ideal?

p u b l i c s t a t i c v o i d doSomething (Vector l i s t) {
s y n c h r on i z e d (l i s t) {

f o r (i n t i = 0 ; i < l i s t . s i z e () ; i++) {
doSomething (l i s t . ge t (i)) ;

}
}

}

16 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Synchronized Classes

Why is this not ideal?
It is not efficient if list is big and/or doSomething() is slow.

p u b l i c s t a t i c v o i d doSomething (Vector l i s t) {
s y n c h r on i z e d (l i s t) {

f o r (i n t i = 0 ; i < l i s t . s i z e () ; i++) {
doSomething (l i s t . ge t (i)) ;

}
}

}

17 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Lock Decomposition

Example
Every thread acquires the lock to access any locked object

18 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Lock Decomposition

Example
Every thread acquires the lock to access any locked object

19 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Lock Decomposition

20 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Example of Lock Decomposition

p u b l i c c l a s s S e r v e r S t a t u s {
p u b l i c f i n a l Set<St r i ng> u s e r s ; //@GuardedBy (‘ ‘ t h i s ’ ’)
p u b l i c f i n a l Set<St r i ng> q u e r i e s ; //@GuardedBy (‘ ‘ t h i s ’ ’)
. . .
p u b l i c s y n c h r o n i z e d vo i d addUser (S t r i n g u) {

u s e r s . add (u) ;
}
p u b l i c s y n c h r o n i z e d vo i d addQuery (S t r i n g q) {

q u e r i e s . add (q) ;
}
p u b l i c s y n c h r o n i z e d vo i d removeUser (S t r i n g u) {

u s e r s . remove (u) ;
}

}

21 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Example of Lock Decomposition

p u b l i c c l a s s S e r v e r S t a t u s {
p u b l i c f i n a l Set<St r i ng> u s e r s ; //@GuardedBy (‘ ‘ u s e r s ’ ’)
p u b l i c f i n a l Set<St r i ng> q u e r i e s ; //@GuardedBy (‘ ‘ q u e r i e s ’ ’)
. . .
p u b l i c v o i d addUser (S t r i n g u) {

s y n ch r on z i e d (u s e r s) { u s e r s . add (u) ; }
}
p u b l i c v o i d addQuery (S t r i n g q) {

s y n c h r on i z e d (q u e r i e s) { q u e r i e s . add (q) ; }
}
p u b l i c s y n c h r o n i z e d vo i d removeUser (S t r i n g u) {

s y n c h r on z i e d (u s e r s) { s e r s . remove (u) ; }
}

}

Notes
addUser() only touches lock of ‘users’, and will not interfere with
addQuery().

22 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

More than Lock Decomposition: Lock
Segmentation/Stripping

Lock decomposition can sometimes to extended to partition
lock on a variable sized set of independent object, which is
called lock segmentation/stripping.

23 / 57

Overview Improves Concurrency Improves Resource Utilization

Reduce Lock Granularity

Example of Lock Stripping: ConcurrentHashMap

It is a HashMap designed for concurrency.
It uses a finer-grained locking mechanism called lock striping.

Uses an array of 16 locks.
Each lock guards 1/16 of the hash buckets.
Bucket N is guarded by lock N mod 16.

The iterators returned by ConcurrentHashMap are weakly
consistent (i.e., it is OK to modify the collection while
iterating through it) instead of fail-fast.

Notes
See more in SimpleConcurrentHashMap.java.

24 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Can we remove locks?

Lock is Bad, and we revise it by: reduce duration; reduce
granularity.
Can we remove it at all? – Replace exclusive locks with
coordination mechanisms that permit greater concurrency

25 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Alternatives to Exclusive Locks

To forego the use of exclusive locks in favor of a more
concurrency-friendly means of managing shared state

Read-write locks: more than one reader can access the shared
resource concurrently, but writers must acquire the lock
exclusively
Immutable objects
Atomic variables

26 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Copy on Write

Problems with locking a collection
If the collection is large or the task performed is lengthy, other
threads could wait a long time.
It increases the risk of problems like deadlock.
The longer a lock is held, the more likely it is to be contended.

Alternative?
Clone the collection, lock and iterate the copy.

27 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Example: CopyOnWriteArrayList

It is a concurrent replacement for a synchronized list that
offers better concurrency in some common situations.
A new copy of the collection is created and published every
time it is modified.
All write operations are protected by the same lock and read
operations are not protected.
See the CopyOnWriteArrayListExample.java.

Note
It is also widely recognized as “immutable operation mechanism”.

28 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Revise the algorithm to get rid of locks

An algorithm is called non-blocking if failure or suspension of
any thread cannot cause failure or suspension of another
thread;
Non-blocking algorithms are immune to deadlock (though, in
unlikely scenarios, may exhibit livelock or starvation)
Non-blocking algorithms are known for
Stacks (Treiber’s), queues, hash tables, etc.

29 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Example 1: Live with Race Condition w/o Lock

Race condition can be benign.
Sometimes, it is even intended in order to get better
performance.

Revisit the FactorTread.java, see the ‘found‘ variable, what do
you see?

It is a global variable
It may be read/write by multiple threads concurrently
There is no ‘violate‘ nor locks to protect the access to it

Question
Can you point out why it is fine to live with such race condition in
this case?

30 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Example 2: Hardware Support for Higher Concurrency

Processors designed for multiprocessor operation provide
special instructions for managing concurrent access to shared
variables, for example:

compare-and-swap
load-linked/store-conditional

OSs and JVMs use these instructions to implement locks and
concurrent data structures

31 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Compare and Swap

CAS has three operands
a memory location V,
the expected old value A,
and the new value B.

CAS updates V to the new value B, but only if the value in V
matches the expected old value A; otherwise, it does nothing.
In either case, it returns the value currently in V.

32 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

CAS in JAVA

CAS is supported in atomic variable classes (12 in
java.util.concurrent.atomic), which are used, to implement
most of the classes in java.util.concurrent package
AtomicInteger, AtomicBoolean, AtomicReference, etc.
See CompareAndSwapLock.java.

Native Implementation

p u b l i c f i n a l n a t i v e
@MethodHandle . Po l ymo rph i cS i gna tu r e
@Ho tSpo t I n t r i n s i cCand i d a t e
boo l ean compareAndSet (Object . . . a r g s) ;

33 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Simulated CAS

p u b l i c c l a s s SimulatedCAS {
p r i v a t e i n t v a l u e ;
p u b l i c s y n c h r o n i z e d i n t ge t () {

r e t u r n v a l u e ;
}
p u b l i c s y n c h r o n i z e d i n t compareAndSwap (i n t expectedVa lue ,

i n t newValue) {
i n t o l dVa l ue = va l u e ;
i f (o l dVa lue == expec t edVa lue)

v a l u e = newValue ;
r e t u r n o l dVa l ue ;

}
p u b l i c s y n c h r o n i z e d boo l ean compareAndSet (i n t expectedVa lue ,

i n t newValue) {
r e t u r n (expec t edVa lue

== compareAndSwap (expectedVa lue , newValue)) ;
}

}

"

The above is just a simulation of CAS. CAS is usually provided as a
single instruction by modern processors (and JVM).

34 / 57

Overview Improves Concurrency Improves Resource Utilization

Remove Locks

Example of using CAS: A Non-blocking Counter

p u b l i c c l a s s CasCounter {
p r i v a t e SimulatedCAS va l u e ;

p u b l i c i n t ge tVa lue () {
r e t u r n v a l u e . ge t () ;

}

p u b l i c i n t i n c r ement () {
i n t v ;
do {

v = va l u e . ge t () ;
} wh i l e (v != va l u e . compareAndSwap (v , v + 1)) ;
r e t u r n v + 1 ;

}
}

35 / 57

Overview Improves Concurrency Improves Resource Utilization

Parallel Program Optimization

The optimization of parallel programs can be tedious.
We have discussed various mechanisms to deal with lock
contentions – a killer reason for performance issues of parallel
program.
In the following, we discuss several mechanisms to further
improve resource utilization:

1 Avoid busy waiting
2 Caching
3 Future task

36 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

The Pitfalls of Busy Waiting

Busy waiting is not efficient
Consider a voting system with two threads. One collects votes
and the other is waiting to count the votes when the voting is
completed
Example program: Voting.java

37 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

Example: Voting System

p u b l i c c l a s s Vot ing {
p u b l i c s t a t i c v o i d main (S t r i n g a r g s []) {

VoteCounter coun t e r = new VoteCounter () ;
c oun t e r . s t a r t () ;
V o t eCo l l e c t e r c o l l e c t o r = new Vo t eCo l l e c t e r (coun t e r) ;
c o l l e c t o r . s t a r t () ;

t r y {
c o l l e c t o r . j o i n () ;
c oun t e r . j o i n () ;

} ca tch (I n t e r r u p t e dE x c e p t i o n e) {
System . out . p r i n t l n ("some␣ th r ead ␣ i s ␣ not ␣ f i n i s h e d "

) ;
}

}
}

38 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

VoteCollecter

c l a s s Vo t eCo l l e c t e r e x t end s Thread {
p r i v a t e VoteCounter coun t e r ;

p u b l i c V o t eCo l l e c t e r (VoteCounter coun t e r) {
t h i s . c oun t e r = coun t e r ;

}

p u b l i c v o i d run () {
System . out . p r i n t l n ("Vot ing ␣and␣ c o l l e c t i n g . ") ;
i n t [] v o t e s = new i n t [1 0 0 0 0] ;

f o r (i n t i = 0 ; i < 10000 ; i++) {
vo t e s [i] = (i n t) (100∗Math . random ()) ;

}

coun t e r . s e tVo t e s (v o t e s) ;
System . out . p r i n t l n ("Vot ing ␣ f i n i s h e d . ␣ C l e an i ng ␣up . ") ;

}
}

39 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

VotingCounter - Option 1

wh i l e (t r u e) {
s y n ch r on i z e d (t h i s) {

i f (v o t e s != n u l l) {
b reak ;

}
}

}

is this a good design?
This code repeatedly enters a synchronized block to check if votes is
not null.

It wastes CPU cycles because it continuously locks and unlocks the
object.

This can cause high CPU usage, known as a “busy wait”.

Not an efficient way to wait for a condition to be met.

40 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

VotingCounter - Option 2
s y n c h r on i z e d (t h i s) {

wh i l e (t r u e) {
i f (v o t e s != n u l l) {

b reak ;
}

}
}

how about this?
This code enters a synchronized block and then performs a busy
wait within it. The while (true) loop runs indefinitely until votes is
not null.

The ‘wait()’ method is never called, so this will also lead to high
CPU usage.

Additionally, since it holds the lock while busy-waiting, it prevents
any other thread from accessing synchronized methods or blocks on
this object, which can lead to deadlock or other threads being
blocked. 41 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

Wait and Notify

Busy waiting is not efficient
Use wait()/nofityAll() to avoid busy waiting.
The C++ equivalent is condition_variable.

42 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

VotingCounter - Option 3
s y n c h r on i z e d (t h i s) { //mind the o r d e r o f s y n c h r o n i z e d and wh i l e

wh i l e (v o t e s == n u l l) { //Q: why a wh i l e l oop i s needed he r e ?
t r y {

wa i t () ;
} ca tch (I n t e r r u p t e dE x c e p t i o n e) {

// TODO Auto−gene r a t ed ca tch b l o ck
e . p r i n t S t a c kT r a c e () ;

}
}

}

how about this?
This is the correct way to wait for a condition to be met. The while
(votes == null) loop checks the condition and calls wait() if votes
is still null.

The wait() method releases the lock and puts the thread into a
waiting state until it is notified.

When notifyAll() is called, the thread wakes up and checks the
condition again.

This avoids busy waiting and allows other threads to acquire the
lock and set votes.

43 / 57

Overview Improves Concurrency Improves Resource Utilization

Wait/Notify

VotingCounter - Option 4
wh i l e (v o t e s == n u l l) {

s y n ch r on i z e d (t h i s) {
t r y {

wa i t () ;
} ca tch (I n t e r r u p t e dE x c e p t i o n e) {

// TODO Auto−gene r a t ed ca tch b l o ck
e . p r i n t S t a c kT r a c e () ;

}
}

}

This code attempts to wait for votes to be set, but it has a major
flaw.
The wait() call is placed inside a synchronized block, but this block
is inside a loop that is outside any synchronization.
Therefore, the condition votes == null is checked without
synchronization, leading to a race condition.
Multiple threads can enter the loop simultaneously, but only one
thread can hold the lock and call wait() at a time. This can result
in threads not properly waiting for the condition.
It is essential to hold the lock while checking the condition and
calling wait(), which is why the previous version (with the
synchronized block outside the loop) is correct.

44 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

To Share or Not to Share, That is the Question

Multithreading is considered one of the most difficult topics in
computer science, it requires a programmer not only to
understand how to manage processes, but also how to manage
memory.

Or more generally, manage intermediate results.
So far, we shall be able to write multithreaded program to
solve the same set of tasks (ideally) much faster than
singlethread program by managing processes properly.

Results caching is another key technique we must be aware of
in writing high-performance multithreaded program.

45 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

To Share or Not to Share, That is the Question

Recall our early example of searching for prime factors.
Suppose we have a server that continuously identifies factors
of a given number submitted by multiple users.

Results can be reused if the input number has been resolved
before (i.e., being cached).
So, once result is obtained, put it in a cache.

46 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Prime factor searching server - v1

p u b l i c c l a s s Resu l tCach ingV1 {
p r i v a t e f i n a l Map<In t e g e r , L i s t <I n t e g e r >> r e s u l t s = new HashMap<

In t e g e r , L i s t <I n t e g e r >>() ;
p u b l i c s y n c h r o n i z e d L i s t <I n t e g e r > s e r v i c e (i n t i n pu t) {

L i s t <I n t e g e r > f a c t o r s = r e s u l t s . ge t (i n pu t) ;
i f (f a c t o r s == n u l l) {// haven ’ t got the f a c t o r s f o r the g i v en

i n pu t ye t .
f a c t o r s = f a c t o r (i n pu t) ; // i d e n t i f y the f a c t o r s .
r e s u l t s . put (input , f a c t o r s) ; // put the f a c t o r s i n t o r e s u l t s .

}
r e t u r n f a c t o r s ;

}
p u b l i c L i s t <I n t e g e r > f a c t o r (i n t n) {

L i s t <I n t e g e r > f a c t o r s = new Ar r a yL i s t <I n t e g e r >() ;
f o r (i n t i = 2 ; i <= n ; i++) {

wh i l e (n % i == 0) { f a c t o r s . add (i) ; n /= i ; }
}
r e t u r n f a c t o r s ;

}
}

Question
Is this design beneficial?

47 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Prime factor searching server - v1

Question
Is this design beneficial? No...

48 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Prime factor searching server - v2

Note
It still leads to potentially redundant computation.

49 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Prime factor searching server

How do we make sure that factor(i) is executed once only for any
input i, and can be used to serve future requests?

Let’s study a concept called “future task”.

50 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Future Task

“extending Thread” and “implement Runnable”, allows us to
define multi-threaded task but the “run” method returns void.

What if we want to return value upon the task finish?

Similar mechanism is supported in C++: <std::future>.
https://www.cplusplus.com/reference/future/future/

51 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Callable v.s. Runable

p u b l i c c l a s s Ca l l a b l eTa s k implements C a l l a b l e <St r i ng> {
p u b l i c S t r i n g c a l l () th rows Excep t i on {// run ()

Thread . s l e e p (10000) ;
System . out . p r i n t l n (" Execu t i ng ␣ c a l l () ! ") ;
r e t u r n " s u c c e s s " ;

}
}

callabletask is the third way of defining multi-threaded tasks.
Similar to the case when we define run(), but here, we can
have return type.
It is often used together with the future task mechanism.

52 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

FutureTask v.s. Thread

Thread a=new Thread (new
Runnable () { . . . }) ;

a . s t a r t () ;

FutureTask<St r i ng > f u t u r e
= new FutureTask <>(

new Ca l l a b l eTa s k ()) ;
f u t u r e . run () ;

Left: Thread and Runnable; Right: FutureTask and Callable;

53 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

FutureTask Complete Example

p u b l i c c l a s s FutureTaskExample {
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

FutureTask<St r i ng> f u t u r e = new FutureTask<>(new Ca l l a b l eTa s k ())
;

f u t u r e . run () ; // th r ead . s t a r t () ;
System . out . p r i n t l n (" Re su l t=") ;
t r y {

S t r i n g r e s u l t = f u t u r e . ge t (1 , TimeUnit .MILLISECONDS) ; //
th r ead . j o i n () .

System . out . p r i n t l n (r e s u l t) ;
} ca tch (I n t e r r u p t e dE x c e p t i o n | Exe cu t i onExc ep t i on |

T imeoutExcept ion e) {
System . out . p r i n t l n ("EXCEPTION ! ! ! ") ;
e . p r i n t S t a c kT r a c e () ;

}
}

}

54 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

FutureTask Complete Example

p u b l i c c l a s s FutureTaskExample {
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) {

FutureTask<St r i ng> f u t u r e = new FutureTask<>(new Ca l l a b l eTa s k ())
;

f u t u r e . run () ; // th r ead . s t a r t () ;
System . out . p r i n t l n (" Re su l t=") ;
t r y {

S t r i n g r e s u l t = f u t u r e . ge t (1 , TimeUnit .MILLISECONDS) ; //
th r ead . j o i n () .

System . out . p r i n t l n (r e s u l t) ;
} ca tch (I n t e r r u p t e dE x c e p t i o n | Exe cu t i onExc ep t i on |

T imeoutExcept ion e) {
System . out . p r i n t l n ("EXCEPTION ! ! ! ") ;
e . p r i n t S t a c kT r a c e () ;

}
}

}

Future.get() returns the result immediately if ‘the future is
here’ (Task is completed) and Blocks if the task is not
complete yet.

55 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Prime factor searching server revisited

Let’s now go back to the prime factor searching server
implementation
Let’s properly utilize caching (with helps of future and
callable).

56 / 57

Overview Improves Concurrency Improves Resource Utilization

Caching

Prime factor Searching Server - FutureTask Version
p u b l i c c l a s s Resu l tCach ingV3 {

p r i v a t e f i n a l ConcurrentHashMap<In t e g e r , Future<L i s t <I n t e g e r >>>
r e s u l t s = new ConcurrentHashMap<In t e g e r , Future<L i s t <
I n t e g e r >>>() ;

p u b l i c L i s t <I n t e g e r > s e r v i c e (f i n a l i n t i n pu t) throws Excep t i on
{

Future<L i s t <I n t e g e r >> f = r e s u l t s . ge t (i n pu t) ;
i f (f == n u l l) {

C a l l a b l e <L i s t <I n t e g e r >> e v a l = new Ca l l a b l e <L i s t
<I n t e g e r >>() {

p u b l i c L i s t <I n t e g e r > c a l l () throws
I n t e r r u p t e dE x c e p t i o n {

r e t u r n f a c t o r (i n pu t) ;
}

} ;
FutureTask<L i s t <I n t e g e r >> f t = new FutureTask<

L i s t <I n t e g e r >>(e v a l) ;
f = r e s u l t s . p u t I fAb s e n t (input , f t) ;
i f (f == n u l l) {

f = f t ;
f t . run () ;

}
}
r e t u r n f . ge t () ;

}
p u b l i c L i s t <I n t e g e r > f a c t o r (i n t n) {
. . .
}

}
57 / 57

	Overview
	Improves Concurrency
	Reduce Lock Duration
	Reduce Lock Granularity
	Remove Locks

	Improves Resource Utilization
	Wait/Notify
	Caching

