
Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Synchronization and Liveness Hazards

Shuhao Zhang

Nanyang Technological University

shuhao.zhang@ntu.edu.sg

June 3, 2024

1 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Outline

Last week: visibility issues
Cache coherence

Ensures that each processor has consistent view of memory
through its local cache

Memory consistency
Order of memory accesses → opportunity for reducing
program execution time

This Week:
race conditions
execution ordering
deadlocks

2 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Introduction

Threads cooperate in multithreaded programs
Share resources, access shared data structures
Coordinate their execution: One thread executes relative to
another

For correctness, we have to control this cooperation
Threads interleave executions arbitrarily and at different rates
Scheduling is not under program control by default

Use synchronization
Restrict the possible interleaving of thread executions

3 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Shared Resources

Coordinating access to shared resources
Basic problem:

If two concurrent threads (processes) are accessing a shared
variable, and that variable is read/ modified/ written by those
threads, then access to the variable must be controlled to
avoid erroneous behavior

Mechanisms to control access to shared resources
Volatile, Locks, mutexes, semaphores, monitors, condition
variables, etc.
Still remember ‘volatile’? :)

Patterns for coordinating accesses to shared resources
Bounded buffer, producer-consumer, etc.

4 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Motivation Example

Implement a function to handle withdrawals from a bank account:

1 public double withdraw (account, amount) {
2 balance = get_balance(account);
3 balance = balance − amount;
4 put_balance(account, balance);
5 return balance;
6 }

2 people share a bank account with a balance of $1000
Simultaneously withdraw $100 from the account

5 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Motivation Example (cont’d)

Create a thread for each person to do the withdrawals
These threads run on the same bank server
What are the possible problems?

6 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Motivation Example - Issues

Execution of the two threads can be interleaved

7 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Race Condition

Two concurrent threads (or processes) accessed a shared
resource (account) without any synchronization

Known as a race condition

Control access to these shared resources
Necessary to synchronize access to any shared data structure

Buffers, queues, lists, hash tables, etc.

8 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Mutual Exclusion

Use mutual exclusion to synchronize access to shared resources

This allows us to have large atomic blocks
Code sequence that uses mutual exclusion is called critical
section

Only one thread at a time can execute in the critical section
All other threads have to wait on entry
When a thread leaves a critical section, another can enter

9 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Critical Section Requirements

Mutual exclusion (mutex)
If one thread is in the critical section, the no other is

Progress
If some thread T is not in the critical section, then T cannot
prevent some other thread S from entering the critical section
A thread in the critical section will eventually leave it
(remember to unlock)

Bounded waiting (no starvation)
If some thread T is waiting on the critical section, then T will
eventually enter the critical section

Performance
The overhead of entering and existing the critical section is
small with respect to the work being done within it

10 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Critical Section Requirements - Details

Requirements:
Safety property: nothing bad happens

Mutex
Liveness property: something good (eventually) happens

Progress, Bounded Waiting

Performance requirement

Properties hold for each run, while performance depends on all
the runs
Rule of thumb: When designing a concurrent algorithm, worry
about safety first (but don’t forget liveness!)

11 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Synchronization Mechanisms Overview

Atomic Variables
Intuitive solution, always consider it first

Locks
Primitive, minimal semantics, used to build others

Semaphores
Basic, easy to get the hang of, but hard to program with

Barriers, Latches, and More
High-level, requires language support, operations implicit

12 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Atomic Variables

Most modern programming languages provide AtomicXXX
data types/constructs.
For example,

AtomicInteger x = new AtomicInteger(0)
x.incrementAndGet() //increments x by 1 atomically

13 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Example of Using Atomic Variables

Notes
See FirstError.java

14 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Example of Using Atomic Variables (cont’d)

Notes
See FirstErrorFixed.java

15 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Compound Actions

When atomic variables are helpless...

16 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Recall: Example

Implement a function to handle withdrawals from a bank account:

1 public double withdraw (account, amount) {
2 balance = get_balance(account);
3 balance = balance − amount;
4 put_balance(account, balance);
5 return balance;
6 }

2 people share a bank account with a balance of $1000
Simultaneously withdraw $100 from the account

17 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Recall: Example

Amount is a shared variable and concurrent access to it can lead to
race condition. So,

1 public static AtomicInteger amount = new AtomicInteger(5000);

It still leads to random results due to race condition.
Checkout the “SecondError.java” for reference.

"

What to rescue? Locks!

18 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Locks

Two operations:
acquire(): to enter a critical section
release(): to leave a critical section

Pair calls to acquire and release
Between acquire/release, the thread holds the lock
Acquire does not return until any previous holder releases
What can happen if the calls are not paired?

Locks can spin (a spinlock) or block (a mutex)

19 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Using Locks

20 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Using Locks in Java: intrinsic lock

Every Java object can implicitly act as a lock for purposes of
synchronization.

1 synchronized (lock) {
2 //Access shared state guarded by lock
3 }

Intrinsic locks act as mutexes (mutual exclusion locks), i.e.,
at most one thread may own the lock.
Since only one thread at a time can execute a block of code
guarded by a given lock, the synchronized blocks guarded by
the same lock execute atomically with respect to one another.

Notes
We will see how to fix the second error with intrinsic lock in tutorial.

21 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Implementing Locks

Figure: First attempt to implement the lock

This is called a spinlock because a thread spins waiting for the
lock to be released
Does this work? 22 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Implementing Locks (cont’d)

No. Two independent threads may both notice that a lock has
been released at the same time and thereby acquire it.

23 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Implementing Locks (cont’d)

The problem: implementation of locks requires critical
sections, too
And, we can use “locks” to guarantee critical section... And,
those “locks” again requiring critical sections...

How do we stop the recursion?
The key idea: the implementation of acquire/release action
must be atomic by itself

An atomic operation is one which executes as though it could
not be interrupted
Code that executes “all or nothing”

Need help from hardware
Atomic instructions (e.g., test-and-set)
Disable/enable interrupts (prevents context switches)

24 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Atomic Instructions: Test-and-set

The semantics of test-and-set are:
Record the old value
Set the value to indicate available
Return the old value

Hardware executes it atomically!

25 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Implementing Locks with Test-and-Set

26 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Problems with Spinlocks

Spinlocks are wasteful
If a thread is spinning on a lock, then the thread holding the
lock cannot make progress (on a uniprocessor)
When using “synchronized”, the thread which wants to
obtain a lock will have to keep waiting if the lock is
being held by other thread.

How did the lock holder give up the CPU in the first place?
Lock holder calls yield or sleep: wait() and notify() in Java.
Involuntary context switch

27 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Monitor: Wait and Notify/Signal

A monitor is a synchronization construct that allows threads
to have both mutual exclusion and the ability to wait (block)
for a certain condition to become false
Wait: calling wait() forces the current thread to wait until
some other thread invokes notify() or notifyAll() on the same
object’s monitor
Notify/signal: use the notify() method for waking up threads
that are waiting for an access to this object’s monitor

Remark
Synchronizers are implemented based on monitors in various ways.
Monitor is explicitly defined as conditional variable in C++, while is
implicitly defined in Java (i.e., every object has a monitor).

28 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Synchronizers

A synchronizer is an object that coordinates the control flow of
threads based on its state.
We will study four important synchronizers in the following.

Semaphore
CyclicBarrier
CountDownLatch
Phaser

They are all available in JDK, and some are available in C++
standards. You may also find the corresponding synchronizers
as a third-party lib for other programming language, e.g.,
Python.

29 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Why Synchronizers?

Compare to Locks, Synchronizers are more flexible and
powerful.
Synchronizers are widely used for parallel program correctness
and performance testing.
They can be also used to simplify the development of parallel
program, but use with care.

30 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Powerful Synchronizers

A synchronizer is an object that coordinates the control flow of
threads based on its state

Semaphores
CyclicBarrier
CountDownLatch
Phaser

Attention 1
They are more flexible and powerful than intrinsic locks and
ReentrantLock but use them with care, e.g., don’t get into the
trouble of liveness hazards.

Attention 2
All provided as standard API in Java. Only Semaphore is provided
as standard API in C++/Python but nothing stop you from
implementing the rest by your own! 31 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Recall Monitor: Wait and Notify/Signal

A monitor is a synchronization construct that allows threads
to have both mutual exclusion and the ability to wait (block)
for a certain condition to become false
Wait: calling wait() forces the current thread to wait until
some other thread invokes notify() or notifyAll() on the same
object’s monitor
Notify/signal: use the notify() method for waking up threads
that are waiting for an access to this object’s monitor

Remark
Synchronizers are implemented based on monitors in various ways.
Monitor is explicitly defined as conditional variable in C++, while is
implicitly defined in Java (i.e., every object has a monitor).

32 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Semaphores

Semaphores

Semaphores are an abstract data type that provide mutual
exclusion through atomic counters

Described by Dijkstra in the “THE” system in 1968
Semaphores are “integers” that support two operations:

Semaphore::Wait(): decrement, block until semaphore is open
Semaphore::Signal: increment, allow another thread to enter
Semaphore safety property: the semaphore value is always
greater than or equal to 0

33 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Semaphores

Semaphore Types

Mutex semaphore (or binary semaphore)
Represents single access to a resource
Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)
Multiple threads can pass the semaphore
Number of threads determined by the semaphore “count”

mutex has count = 1, counting has count = N

34 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Semaphores

Example

35 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Semaphores

How to use Semaphores

Take a look at SemaphoreExample.java, learn how it works.

36 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Semaphores

Semaphores Summary

Semaphores can be used as a mutex
However, they have some drawbacks

They are essentially shared global variables
Can potentially be accessed anywhere in program

No connection between the semaphore and the data being
controlled by the semaphore
Used both for critical sections (mutual exclusion) and
coordination (scheduling)

Sometimes hard to use and prone to bugs

37 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Barrier

Barrier

38 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Barrier

Cyclic Barriers

Allows a set of threads to all wait for each other to reach a
common barrier point.
The barrier is often called cyclic because it can be re-used
after the waiting threads are released.

39 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Barrier

Cyclic Barriers

Two powerful features of CB:
A CyclicBarrier supports an optional runnable command
that is run once per barrier point, after the last thread arrives,
but before any threads are released.
CyclicBarrier is auto-reset and can be immediately reused
once the last thread arrives.

Remark
Since C++20 (December 2020), c++ supports barrier officially.
https://en.cppreference.com/w/cpp/thread/barrier. Find
out the difference compared to cyclic barrier in Java.

40 / 72

https://en.cppreference.com/w/cpp/thread/barrier

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Barrier

How to use CyclicBarrier

Take a look at CyclicBarrierExample.java, learn how it works.

41 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Latch

CountDownLatch

A synchronization aid that allows
one or more threads to wait until a
set of operations being performed
in other threads completes.

Key difference: CDL can be
count down by the same thread
more than one time!
e.g., one thread has multiple
operations to be synchronized
with others.

42 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Latch

How to use CountDownLatch

Take a look at CountDownLatchExample.java, learn how it works.

43 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Phaser

Phaser

Phaser (introduced in Java 7)
A reusable synchronization barrier, similar in functionality to
CyclicBarrier and CountDownLatch but supporting even
more flexible usage.

register(), bulkRegister(int parties) to control the number
participants at runtime.
while cyclicbarrier and countdownlatch have fixed participants

44 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Phaser

How to use phaser

Take a look at PhaserExample.java, learn how it works.

45 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Phaser

Barrier vs Latch vs Phaser

CountDownLatch:
Created with a fixed number of threads
Cannot be reset
Allow threads to wait (method await) or continue with its
execution (method countdown())

Cyclic Barrier:
Can be reset.
Does not provide a method for the threads to advance. The
threads have to wait till all the threads arrive.
Created with fixed number of threads.

Phaser:
Number of threads need not be known at Phaser creation
time. They can be added dynamically.
Can be reset and hence is, reusable.
Allows threads to wait (method arriveAndAwaitAdvance()) or
continue with its execution(method arrive()).
Supports multiple Phases.

46 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Classic Synchronization Problems

Producer-consumer
Infinite buffer
Finite buffer

Readers-writers
Dining philosophers

Note
There are many interesting classic synchronization problems in the
textbook.

47 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Producer-consumer

Producer-consumer

Producers create items of some kind and add them to a data
structure
Consumers remove the items and process them
Variables:

mutex = Semaphore (1)
items = Semaphore (0)

48 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Producer-consumer

Producer-consumer

Producer
event = waitForEvent ()
mutex.wait()

buffer.add (event)
items.signal ()

mutex.signal ()

Consumer
items.wait ()
mutex.wait ()

event = buffer.get ()

mutex.signal ()
event.process ()

"

Can you draw a “sequence diagram” to illustrate their interactions,
i.e., “producer”, “mutex”, “item”, and “consumer”.

49 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Producer-consumer

Improved Producer-consumer

Producer
event = waitForEvent ()
mutex.wait()

buffer.add (event)

mutex.signal ()
items.signal ()

Consumer
items.wait ()
mutex.wait ()

event = buffer.get ()

mutex.signal ()
event.process ()

"

Can you draw a “sequence diagram” to illustrate why this becomes
a better version?

50 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Producer-consumer

Broken Producer-consumer

Producer
event = waitForEvent ()
mutex.wait()

buffer.add (event)

mutex.signal ()
items.signal ()

Consumer
mutex.wait ()

items.wait ()
event = buffer.get ()

mutex.signal ()
event.process ()

"

Can you draw a “sequence diagram” to illustrate why this won’t
work?

51 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Producer-consumer

Producer-consumer with Finite Buffer

Producer
event = waitForEvent ()
spaces.wait()
mutex.wait ()

buffer.add (event)

mutex.signal ()
items.signal ()

Consumer
items.wait ()
mutex.wait ()

event = buffer.get ()

mutex.signal ()
spaces.signal ()
event.process ()

"

You may notice that, the buffer may become infinite large. Can you
draw a “sequence diagram” to illustrate their interactions, i.e.,
“producer”, “mutex”, “spaces”, and “consumer” of this version?

52 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Readers-writers problem

Readers-writers problem

Requirements:
Any number of readers can be in the critical section
simultaneously
Writers must have exclusive access to the critical section
Variables:

int readers = 0
mutex = Semaphore (1)
roomEmpty = Semaphore (1)

53 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Readers-writers problem

Readers-writers

Writers
roomEmpty.wait ()

#critical section
for writers

roomEmpty.signal ()

Readers
mutex.wait ()

readers += 1
if readers == 1:

roomEmpty.wait () // first in locks

mutex.signal ()
critical section for readers
mutex.wait ()

readers -= 1
if readers == 0:

roomEmpty.signal () // last out
unlocks

mutex.signal ()

54 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Readers-writers problem

Lightswitch Definition

class Lightswitch :

1 def__init__(self):
2 self.counter = 0
3 self.mutex = Semaphore (1)
4 def lock (self , semaphore):
5 self.mutex.wait ()
6 self.counter += 1
7 if self.counter == 1:
8 semaphore.wait ()
9 self.mutex.signal ()

10 def unlock (self , semaphore):
11 self.mutex.wait ()
12 self.counter −= 1
13 if self.counter == 0:
14 semaphore.signal ()
15 self.mutex.signal () 55 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Readers-writers problem

Readers-writers with Lightswitch

Writers
roomEmpty.wait ()

#critical section for
writers

roomEmpty.signal ()

Readers
readLightSwitch.lock
(roomEmpty)

critical section

readLightSwitch.unlock
(roomEmpty)

Note
starving writers...
Use a turnstile = Semaphore (1)

56 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Readers-writers problem

No-starve Readers-writers

Writers
turnstile.wait ()

roomEmpty.wait ()
critical section for
writers

turnstile.signal ()
roomEmpty.signal ()

Readers
turnstile.wait ()
turnstile.signal ()
readLightSwitch.lock (
roomEmpty)

critical section

readLightSwitch.unlock (
roomEmpty)

"

Can you draw a “sequence diagram” to illustrate their interactions,
i.e., “writer 1”, “writer 2”, “reader1”, “reader2”, “turnstile”,
“readLightSwitch”, and “roomEmptyMutex” of this version?

57 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Definition: Deadlock

Deadlock definition
Deadlock exists among a set of processes if every process is
waiting for an event that can be caused only by another
process in the set

Deadlock is a problem that can arise:
When processes compete for access to limited resources
When processes are incorrectly synchronized

58 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Condition for Deadlock

Deadlock can exist if and only if the following four conditions
hold simultaneously:

Mutual exclusion – At least one resource must be held in a
non-sharable mode
Hold and wait – There must be one process holding one
resource and waiting for another resource
No preemption – Resources cannot be preempted (critical
sections cannot be aborted externally)
Circular wait – There must exist a set of processes [P1, P2,
P3,. . . ,Pn] such that P1 is waiting for P2, P2 for P3, etc.

59 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Classical Deadlock Problem: Dining Philosophers Problem

Each philosopher needs two forks to eat.
Each philosopher picks the one on the left first.

60 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Classical Deadlock Problem: Dining Philosophers Problem

Recall: Deadlock is the situation
when two or more threads are
both waiting for the others to
complete, forever.

Notes
Take DiningPhilDemo.java as a reference

61 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Why a deadlock may occur?

62 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Dealing with Deadlock

There are four approaches for dealing with deadlock:
Ignore it – how lucky do you feel?
Prevention – make it impossible for deadlock to happen
Avoidance – control allocation of resources
Detection and Recovery – look for a cycle in dependencies

63 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Remedy for Deadlock: Single Lock

A program that never acquires more than one lock at a time
will not experience lock-ordering deadlocks.
A simple strategy is to combine two locks into one, i.e., must
acquire two locks at the same time.

64 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Remedy Deadlock: Single Lock (Example)

Remark
Deadlock is prevented, but..

65 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Remedy for Deadlock: global sequence

A program will be free of lock-ordering deadlocks if all threads
acquire the locks they need in a fixed global order.

Is this deadlocking? Thread A locks a, b, c, d, e in the
sequence and thread B locks c, f, e.
Is this deadlocking? Thread A locks a, b, c, d, e in the
sequence and thread B locks e, f, c.

66 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Remedy for Deadlock: global sequence (Example)

When can transferMoney deadlock?
Thread A: transferMoney(myAccount, yourAccount, 1)
Thread B: transferMoney(yourAccount, myAccount, 1)

Notes
Take ‘TransferExample.java‘ as reference

67 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Remedy for Deadlock: global sequence (Fixed example)

Notes
Take ‘TransferExampleFixed.java‘ as reference

68 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Remedy for Deadlock: Explicitly Break Deadlocks

When deadlock happens, we can
break it by releasing the locks.

69 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Remedy for Deadlock: Explicitly Break Deadlocks (Example)

Use the timed tryLock feature of the explicit Lock class
instead of intrinsic locking.

ReentrantLock in Java API
What’s the counterpart in C/C++/Python?

Notes
Take ‘ReentrantLockExample.java‘ as reference

70 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Other Liveness Hazards

Starvation is a situation where a process is prevented from
making progress because some other process has the resource
it requires
Starvation is a side effect of the scheduling algorithm

OS: A high priority process always prevents a low priority
process from running on the CPU
One thread always beats another when acquiring a lock

71 / 72

Overview Atomic and Locks Implementing Locks Synchronizers Synchronization Problems

Liveness Problem

Other Liveness Hazards (cont’d)

Poor responsiveness
may be caused by poor lock management

Livelock: a thread, while not blocked, still cannot make
progress because it keeps retrying an operation that will always
fail

e.g., when two overly polite people are walking in the opposite
direction in a hallway. Both continuously give away the current
position

72 / 72

	Overview
	Atomic and Locks
	Implementing Locks
	Synchronizers
	Semaphores
	Barrier
	Latch
	Phaser

	Synchronization Problems
	Producer-consumer
	Readers-writers problem
	Liveness Problem

