
Overview Why Cache? Cache Coherence Memory Consistency

Cache Coherence and Memory Consistency

Shuhao Zhang

Nanyang Technological University

shuhao.zhang@ntu.edu.sg

June 3, 2024

1 / 63

Overview Why Cache? Cache Coherence Memory Consistency

2 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Parallel Computing is Challenging

Parallel Programming Challenges:
Finding enough parallelism (Amdahl’s Law!)
Granularity
Locality
Load balance
Coordination and synchronization
Correctness/Debugging
Performance modelling / Monitoring

"

Those are what the foster’s design methodology emphsize

3 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Parallel Computing is Challenging

Parallel Programming Challenges:
Finding enough parallelism (Amdahl’s Law!)
Granularity
Locality
Load balance
Coordination and synchronization
Correctness/Debugging! ;)
Performance modelling / Monitoring

"

How to make sure our multi-threading program is a correct one?

4 / 63

Overview Why Cache? Cache Coherence Memory Consistency

A Joke

Some people, when confronted with a problem, think, ’I know, I’ll
use threads’ - and then two they hav erpoblesms.

5 / 63

Overview Why Cache? Cache Coherence Memory Consistency

What is the Problem?

1 A sequential program consisted of a sequence of instructions
(and a memory), where each instruction executed one after the
other (to modify the memory, etc.).

2 The sequential paradigm has the following two characteristics:
the textual order of statements specifies their order of
execution1; successive statements must be executed without
any overlap (in time) with one another.

Remark
Both are not true in parallel computing.

1there are exceptions.
6 / 63

Overview Why Cache? Cache Coherence Memory Consistency

What is the Problem?

Threads cooperate during parallel computing2

Share resources, access shared data structures
Scheduling is (by default) not under program control, but by
who?
Threads interleave executions arbitrarily and at different rates

2Discuss in terms of threads, but also applies to processes.
7 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Common Correctness Issues

Visibility issues
Race conditions
Execution ordering
Deadlocks

8 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Outline

This week: visibility issues
Cache coherence and memory consistency

Next Week: other issues

9 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Why Cache Matters?

How does cache matters to parallel computing? It matters in terms
of both correctness and efficiency of parallel program.

efficiency: locality principle
correctness: visibility issue

Notes
Let’s begin with ‘efficiency’ aspect.

10 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Why do Modern Processors have Cache?

Processors run efficiently when data is resident in caches
Caches reduce memory access latency
Caches provide high bandwidth data transfer to CPU

11 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Why do Modern Processors have Cache?

12 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Cache Properties

Cache size: larger cache increases access time (because of
increased addressing complexity) but reduces cache misses
Block size: data is transferred between main memory and
cache in blocks of a fixed length

Larger blocks reduces the number of blocks but replacement
costs more → block size should be small
But larger block increase the chance of spatial locality cache
hit → block size should be large

Remark
Typical sizes for L1 cache blocks are 4 or 8 memory words

13 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Principle of Locality

Programs tend to reuse data and instructions near those they
have used recently, or that were recently referenced themselves

Spatial locality: Items with nearby addresses tend to be
referenced close together in time
Temporal locality: Recently referenced items are likely to be
referenced in the near future

14 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Locality Example:

sum = 0 ;
f o r (i = 0 ; i < n ; i++)

sum += a [i] ;
r e t u r n sum ;

From “Data” ’s view:
Reference array elements in succession (stride-1 reference
pattern): Spatial locality
Reference sum each iteration: Temporal locality

From “Instruction” ’s view:
Reference instructions in sequence: Spatial locality
Cycle through loop repeatedly: Temporal locality

15 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Sources of locality

f o r (i =0; i<N; i++) {
A[i] = B[i] + C [i] ∗ a ;

}

Temporal locality:
Code within a loop
Same instructions fetched repeatedly

Spatial locality:
Data arrays
Local variables in stack
Data allocated in chunks (contiguous bytes)

16 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Matrix Multiplication

17 / 63

Overview Why Cache? Cache Coherence Memory Consistency

One Iteration

Read:
Row i th of matrix A
Entire matrix B

Write:
Row i th of matrix C

Remark
What are the potential cache
related performance problems?

18 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Matrix Multiplication and Cache

Matrix row-column ordering:
Row-major vs Column-major

Size of matrix: How large is the square matrix that can be
stored entirely in a 256KB cache?
You can assume double-precision floating point numbers (i.e.,
8 bytes).

19 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Why Cache Matters?

Cache is much faster than memory, and locality is a key
performance factor.

Notes
Let’s now come back to the ‘correctness’ aspect.

20 / 63

Overview Why Cache? Cache Coherence Memory Consistency

A Coherent Memory System

Informally, we could say that a memory system is coherent if
any read of a data item returns the most recently written value
of that data item.
This simple definition contains two different aspects of
memory system behavior, both of which are critical to writing
correct shared-memory programs.

The first aspect, called coherence, defines what values can be
returned by a read.
The second aspect, called consistency, determines when a
written value will be returned by a read.

21 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Properties of a coherent memory system

A coherent memory system is coherent if the following hold
good:

Program Order property:
Given the sequence: 1) P write to X; 2) No write to X; 3) P
read from X
P should get the value written in 1)

Write Propagation property:
Given the sequence: 1) P1 write to x; 2) No further write to
x; 3) P2 read from x
P2 should read value written by P1
That is, writes become visible to other processors

Write Serialization property:
Given the sequence: 1) Write V1 to X (by any processor); 2)
Write V2 to X (by any processor)
Processors can never read X as V2, then later as V1
All writes to a location (from the same or different processors)
are seen in the same order by all processors

22 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Formal Definition of Cache Coherence

Cache Coherence: ensures that each processor has consistent
view of memory through its local cache

All writes to SAME memory location (address) should be
seen by all processors in the same order
Writes to an address by one processor will eventually be
observed by other processors – but does not specify when

23 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Implication of Cache Coherence for Multi-threading
Programming

Intuitively, reading value at an address should return the last
value written at that address by any processor
Multiprocessor: a single share address space leads to a memory
coherence problem because there is

Global storage space (main memory)
Per-processor local storage (per-processor caches)

24 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Cache Lines

When the CPU caches are reading data from lower level
caches or main RAM (e.g. L1 from L2, L2 from L3 and L3
from main RAM), they read a cache line.
A cache line typically consists of 64 bytes. Thus, the caches
read 64 bytes at a time from lower level caches or main RAM.

25 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Cache Line Invalidation

When a CPU writes to memory address in a cache line,
typically because the CPU is writing to a variable, the cache
line becomes dirty.
The cache line then needs to be synchronized to other CPUs
that also have that cache line in their CPU caches. The same
cache line stored in the other CPU caches thus becomes
invalid - they need to be refreshed, in other words.
Cache refreshing after cache invalidation can happen either
via cache coherence mechanisms, or by reloading the cache
line from main RAM.
The CPU is not allowed to access that cache line until it has
been refreshed.

26 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Cache Coherence Problem

Multiple copies of the same data exists on different caches
Local update by processor → Other processors may still see
the unchanged data

27 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Maintaining Cache Coherence

Cache coherence can be maintained by:
Software based solution

OS + Compiler + Hardware aided solution
E.g., OS uses page-fault mechanism to propagate writes

Hardware based solution
Most common on multiprocessor system
Known as cache coherence protocols

28 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Software-based Cache Coherence Maintenance: Write Policy

Write-through: write access is immediately transferred to main
memory

Advantage: always get the newest value of a memory block
Disadvantages: slow down due to memory accesses

A simple trick to improve: use a write buffer – buffer write
policy

Write-back: write operation is performed only in the cache
write is performed to the main memory when the cache block
is replaced
uses a dirty bit to indicates whether the cache is still valid
Advantages: less write operations
Disadvantages: memory may contain invalid entries; onus

Remark
By default, python Java/C program follows write-back strategy

29 / 63

Overview Why Cache? Cache Coherence Memory Consistency

FYI: Write-back Cache

Example: processor executes int x = 1;
1 Processor performs write to address that "misses” in cache
2 Cache selects location to place line in cache, if there is a dirty

line currently in this location, the dirty line is written out to
memory

3 Cache loads line from memory (“allocates line in cache”)
4 Whole cache line is fetched
5 Cache line is marked as dirty

30 / 63

Overview Why Cache? Cache Coherence Memory Consistency

FYI: Hardware-based Cache Coherence Maintenance

Two major categories:
Snooping Based

No centralized directory
Each cache keeps track of the sharing status
Cache monitors or snoop on the bus

to update the status of cache line
takes appropriate action

Most common protocol used in architectures with a bus
Directory Based

Sharing status is kept in a centralized location
Commonly used with NUMA architectures

31 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Cache Coherence Implications

Overhead in shared address space:
CC appears as increased memory latency in multiprocessor
CC lowers the hit rate in cache

Two Common Cache Coherence Problems:
Visibility of Global Variable
False sharing

32 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Case Study: “Global" Variables

Define static variable of a class, and all threads of the class
can “see" (read and write) to that variable.
FYI: There’s no official “interrupt" API in C/C++, we can use
global variable to simulate it. (How?)

33 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Visibility of Variables

Global variables of a program
and all dynamically allocated
data objects can be accessed
by any thread of this process
Each thread has a private
runtime stack for function
stack frames
Runtime stack of a thread
exists iff the thread is active

34 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Java Memory Model

The Java Memory Model proposes a weaker guarantee called
Data-Race Free Guarantee:

A program is said to be correctly synchronized or
data-race-free iff all sequentially consistent executions of the
program are free of data races.

35 / 63

Overview Why Cache? Cache Coherence Memory Consistency

The volatile Keyword

Force the write to a volatile variable to be dump to main memory
and ensures subsequent read to that variable are executed after
write:

It enforces the cache coherence in JVM (even if the HW does
not support it)
and surely setup the happen-before relation as a result ;)

Caution
Self-study: volatile keyword in C/C++ stands for different
purposes, use std :: atomic <T > instead. https://en.
wikipedia.org/wiki/Volatile_(computer_programming)

36 / 63

https://en.wikipedia.org/wiki/Volatile_(computer_programming)
https://en.wikipedia.org/wiki/Volatile_(computer_programming)

Overview Why Cache? Cache Coherence Memory Consistency

KeepRunning Experiment

p u b l i c c l a s s keepRunn ingExper iment ex t end s Thread {
v o l a t i l e boo l ean keepRunning = t r u e ;
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) throws I n t e r r u p t e dE x c e p t i o n {

V i s i b i l i t y t = new V i s i b i l i t y () ;
t . s t a r t () ;
Thread . s l e e p (1000) ;
t . keepRunning = f a l s e ;
System . out . p r i n t l n (System . c u r r e n tT im eM i l l i s () + " : ␣ keepRunning ␣

i s ␣ f a l s e ") ;
}
p u b l i c v o i d run () {

wh i l e (keepRunning) {
}

}
}

Remark
What will happen here? What if we remove the ‘volatile‘ keyword?

37 / 63

Overview Why Cache? Cache Coherence Memory Consistency

KeepRunning Experiment (Cont’d)

Data Race: Two accesses x and y form a data race in an
execution of a program if they are from different threads, they
conflict, and they are not ordered by happens-before → this
program is NOT data-race-free
And, it is your responsibility to ensure its correctness (not by
JVM!)

38 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Recall: Cache Lines

A cache line typically consists of 64 bytes. Thus, the caches
read 64 bytes at a time from lower level caches or main RAM.
A single cache line will often store more than one variable.

If the same CPU needs to access more of the variables stored
within the same cache line - this is an advantage.
If multiple CPUs need to access the variables stored within the
same cache line, false sharing can occur.

39 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Case Study: False sharing problem

The diagram shows two threads
running on different CPUs which
write to different variables - with
the variables being stored within
the same CPU cache line -
causing false sharing.

False Sharing:
2 processors write to different addresses, but..
The addresses map to the same cache line

40 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Fixing False Sharing

The way to fix a false sharing problem is to design your code
so that different variables used by different threads do not end
up being stored within the same CPU cache line.
Exactly how you do that depends on your concrete code, but
storing the variables in different objects is one way to do so -
as the example in the previous section showed.
Another way is to use @Contented keyword since Java 8.

41 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Memory Consistency vs. Cache Coherence

[Recap] Cache Coherence: ensures that each processor has
consistent view of memory through its local cache

All writes to SAME memory location (address) should be
seen by all processors in the same order
Writes to an address by one processor will eventually be
observed by other processors – but does not specify when

Memory consistency ensures
Constraints on the order in which memory operations can
appear to execute – when the operations are seen by other
processors?
For DIFFERENT memory locations

The consistency model is then used:
By programmers to reason about correctness and program
behavior
By system designers to decide the reordering possible by
hardware and compiler

42 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Warm up: Uniprocessor

In uniprocessor, we assume:
Memory operations are performend in program order
Memory operations are atomic

But, actually:
Operations maybe reordered to improve performance
Constraint on reordering: must respect dependence:

control dependence must be respected
data dependence must be respected: in particular, loads/stores
to a given memory address must be executed in program order
(but not constrained for different memory locations)
Read maybe out of order w.r.t write for different memory
locations
Write may not be reflected in main memory immediately

43 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Memory Consistency Problem

44 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Memory Consistency Models

Memory consistency model is sort of a contract between
programmer and system, wherein the system guarantees that if
the programmer follows the rules, memory will be consistent
and the results of reading, writing, or updating memory will be
predictable.

45 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Types of Memory Consistency Models

issue and view methods:
Issue: issue method describes the restrictions that define how
a process can issue operations.
View: View method which defines the order of operations
visible to processes.

For example, a consistency model can define that a process is
not allowed to issue an operation until all previously issued
operations are completed.
One consistency model can be considered stronger than
another if it requires all conditions of that model and more.

46 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Strict consistency

A shared-memory system is said to support the strict consistency
model if

the value returned by a read operation on a memory address is
always the same as the value written by the most recent write
operation to that address, irrespective of the locations of the
processes performing the read and write operations
all writes instantaneously become visible to all processes

Remark
Only applicable for uniprocessor system as it assumes concurrent
writes to be impossible.

47 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Sequential Consistency Model (SC) – Lamport 1976

A shared-memory system is said to support the sequential
consistency model if

Every processor issues its memory operations in program order
all processes see the same order of all memory access
operations on the shared memory
it does not specify the exact order in which the memory access
operations are interleaved
effect of each memory operation must be visible to all
processors before the next memory operation on any processor

Remark
It is an intuitive extension of strict consistency model but can result
in loss of performance

48 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Sequential Consistency: Illustration

Program order: memory ordering has to follow the individual
order in each thread
Write-atomicity: there can be any interleaving of such
sequential segments - but a single total order of all memory
operations
As if only one memory operation at any point in time

49 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Motivation for Relaxed Consistency (RC)

Hide latencies!
To gain performance
Specifically, hiding memory latency: overlap memory access
operations with other operations when they are independent

How?
Overlap memory access operations with other operations when
they are independent

50 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Relaxed Consistency

Relaxed Consistency – relax the ordering of memory operations
if data dependencies allow

If two operations access the same memory location:
R → W: anti-dependence (WAR)
W → W: output dependence (WAW)
W → R: flow dependence (RAW)

Relaxed memory consistency models allow certain orderings to
be violated

Warning
Program order must be preserved: memory ordering has to follow
the individual order in each thread/core

51 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Relaxed Consistency: Idea

SC:
What are the valid operation
orders?
e.g., (1)-(2)-(5)-(6)-(3)-(4)

Example of RC:
relax W → R
Possible with RC:

(3)-(4) or (4)-(3)
(1)-(2) or (2)-(1)
(5)-(6)
not: (6)-(5) → program
order must be preserved

52 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Relaxed Memory Consistency Models

Memory models resulted from relaxation of SC’s requirements
Program order relaxation:

Write → Read
Write → Write
Read → Read or Write

All models provide overriding mechanism to allow a
programmer to intervene

53 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Write-to-Read Order Relaxing

Key Idea:
Allow a read on processor P to be reordered w.r.t. to the
previous write of the same processor

so as to hide the write latency
different timing of the return of the read further defines
different consistency models: Total Store Ordering (TSO);
Processor Consistency (PC)

TSO: Return the value written by P earlier without waiting for
it to be serialized
PC: Return the value of any write (even from another
processor) before the write is propagated or serialized

Remark
TSO appears to match the memory consistency model of the widely
used x86 architecture

54 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Example 1

A = Flag = 0 initially
Can A = 0 be printed under the models of SC/TSO/PC?

55 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Example 1 (cont’d)

A = Flag = 0 initially
Can A = 0 be printed under the models of SC/TSO/PC?
Impossible.

56 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Example 2

A = B = 0 initially
Can A = 0; B = 0 be printed under the models of
SC/TSO/PC?

57 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Example 2 (cont’d)

A = B = 0 initially
Can A = 0; B = 0 be printed under the models of
SC/TSO/PC?
Impossible for SC, but possible for TSO/PC

because TSO/PC can violate W →R

58 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Write-to-Write Order Relaxing

Key Idea:
Writes can bypass earlier writes (to different locations) in write
buffer
Allow write miss to overlap and hide latency

Example Model:
Partial Store Ordering (PSO), relax both

W →R
W →W

59 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Example 3

A = Flag = 0 initially
Can A = 0 be printed under the models of SC/TSO/PC/PSO?

60 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Example 3 (cont’d)

A = Flag = 0 initially
Can A = 0 be printed under the models of SC/TSO/PC/PSO?
Possible for PSO: W(Flag), R(Flag), W(A), R(A)

61 / 63

Overview Why Cache? Cache Coherence Memory Consistency

More For Your Own Exploration

Other weak ordering models, e.g., causal consistency
No completion order of the memory operations is guaranteed,
i.e., relax R → R, R → W
That is out-of-order execution
It is possible to decouple consistency model presented to
programmer from that of the hardware/compiler: What is the
memory consistency model of C++/Python?

How to fully enjoy the performance benefits while guaranteeing
program correctness?

Lock/Unlock
Memory fence
Volatile
...

62 / 63

Overview Why Cache? Cache Coherence Memory Consistency

Homework Question
If we declare every variable with volatile in Java...
Which model do we essentially enforce: SC/TSO/PC/PSO?

For more on Java Memory Model, checkout “17.4 Memory Model”
at Link

63 / 63

https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html

	Overview
	Why Cache?
	Cache Coherence
	Memory Consistency

