
Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Intro To Parallel Computing

Shuhao Zhang

Nanyang Technological University

shuhao.zhang@ntu.edu.sg

June 3, 2024

1 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Observations

Single Processor: powerful, but
has capacity upper bond. Failed
to meet Moore’s Law since early
2000.

Multicore Processor: a collection
of processing units to
cooperatively solve a problem
quickly.

2 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Serial Computing

Traditionally, a problem is divided into a discrete series of
instructions

Instructions are executed one after another
Only one instruction executed at any moment in time

3 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Parallel Computing

Simultaneous use of multiple processing units to solve a
problem fast / solve a larger problem
Processing units could be

A single processor with multiple cores
A single computer with multiple processors
A number of computers connected by a network
Combinations of the above

Ideally, a problem (application) is partitioned into sufficient
number of independent parts for execution on parallel
processing elements

4 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Illustration of Parallel Computing

A problem is divided into 4 pieces (tasks) that can be solved
concurrently
Each task may be processed as multiple instructions same as
serial computing

5 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Benefit of Concurrency

Better hardware resource utilization: with K processors, ideally
we can be K times faster
Time Complexity: O(n)→O(n/k)

Observation
It does not change from O(n) to O(log(n)) or O(loglog(n)). Why
it still helps?

6 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Benefit of Concurrency

Can we get better performance with 1 core only1?

1FYI: A single-core computer is rarely seen nowadays, but it does exist in
the history :)

7 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Benefit of Concurrency: Example Application

Matrix Multiplication

8 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Benefit of Concurrency: Example Application

Matrix Multiplication

A[m x n] dot B [n x k] can be finished in O(n) instead of
O(m∗n∗k) when executed in parallel using m∗k processors.

9 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

What is “Process"

A program in execution:
Identified by PID (process ID)
Comprises:

executable program and Program Counter2
global data

OS resources: open files, network connections

stack or heap
current values of the registers (e.g., General Purpose Register
(GPR))

Own memory address space → exclusive access to its data
Two or more processes exchange data → need explicit
communication mechanism (IPC)

2A program counter (PC) is a CPU register in the computer processor which
has the address of the next instruction to be executed from memory.

10 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Example of “Fork()"

i n t main (i n t argc , cha r ∗ a rgv [])
{

cha r ∗name = argv [0] ;
i n t c h i l d_p i d = f o r k () ;
i f (c h i l d_p i d == 0) {

p r i n t f (" Ch i l d ␣ o f ␣%s ␣ i s ␣%d\n" , name , g e t p i d ()) ;
r e t u r n 0 ;
} e l s e {
p r i n t f ("My␣ c h i l d ␣ i s ␣%d\n" , c h i l d_p i d) ;
r e t u r n 0 ;

}
}

11 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Multi-Processes Programming

Several processes at different stages of execution
Need context switch, i.e., switching between processes
States of the suspended process must be saved → overhead
two types of multi-processes execution:

Time slicing execution – pseudo-parallelism
Parallel execution of processes on different resources (e.g.,
cores)

12 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Inter-process Communication (IPC)

Cooperating processes have to share information:
Shared memory: Need to protect access when reading/writing
to the same space concurrently
Message passing:

Blocking & non-blocking
Synchronous & asynchronous

13 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Example of IPC through Shared-Memory

#i n c l u d e <sy s / i p c . h>
#i n c l u d e <sy s /shm . h>
us i n g namespace s td ;
i n t main () {
key_t key = f t o k (" s hm f i l e " ,65) ; //

f t o k to g ene r a t e un ique key
i n t shmid = shmget (key , 1024 , 0666 |

IPC_CREAT) ; // shmget r e t u r n s
an i d e n t i f i e r i n shmid

char ∗ s t r = (cha r ∗) shmat (shmid , (
vo i d ∗) 0 ,0) ; // shmat to
a t t a ch to sha r ed memory

g e t s (s t r) ; // w r i t e data
shmdt (s t r) ; // detach from sha r ed

memory
r e t u r n 0 ;
}

#i n c l u d e <sy s / i p c . h>
#i n c l u d e <sy s /shm . h>
i n t main () {
key_t key = f t o k (" s hm f i l e " ,65) ;

// f t o k to g ene r a t e un ique
key

i n t shmid = shmget (key , 1024 , 0666 |
IPC_CREAT) ; // shmget
r e t u r n s an i d e n t i f i e r i n
shmid

char ∗ s t r = (cha r ∗) shmat (shmid , (
vo i d ∗) 0 ,0) ; // shmat to
a t t a ch to sha r ed memory

p r i n t f ("Data␣ read ␣ from␣memory : ␣%s
\n" , s t r) ; // read data

shmdt (s t r) ; // detach from sha r ed
memory

// d e s t r o y the sha r ed memory
shmct l (shmid , IPC_RMID ,NULL) ;
r e t u r n 0 ;
}

": Such shared-memory IPC is not available for Java/Python.

14 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Example of IPC through Message Passing

p u b l i c c l a s s MyServer {
p u b l i c s t a t i c v o i d main (S t r i n g []

a r g s) {
t r y {

Se r v e rSo ck e t s s=new
Se r v e rSock e t (6666) ;

Socket s=s s . a ccep t () ; //
e s t a b l i s h e s
conne c t i on

Data InputStream d i s=new
DataInputStream (s .
ge t I npu tS t r eam ()) ;

S t r i n g s t r =(S t r i n g) d i s .
readUTF () ;

System . out . p r i n t l n ("
message=␣"+s t r) ;

s s . c l o s e () ;
} ca tch (Excep t i on e) {

System . out . p r i n t l n (e
) ; }

}
}

p u b l i c c l a s s MyCl ient {
p u b l i c s t a t i c v o i d main (S t r i n g []

a r g s) {
t r y {

Socket s=new Socket ("
l o c a l h o s t " ,6666) ;

DataOutputStream dout=new
DataOutputStream (s .

getOutputStream ()) ;
dout . writeUTF (" He l l o ␣

S e r v e r ") ;
dout . f l u s h () ;
dout . c l o s e () ;
s . c l o s e () ;
} ca tch (Excep t i on e) {

System . out . p r i n t l n (e
) ; }

}
}

": Java uses RMI and socket for communication between
processes, it is not “shared-memory" but message passing.

15 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Disadvantages of Processes

Creating a new process is costly
Overhead of system calls
All data structures must be allocated, initialized and copied

Communicating between processes costly
Communication goes through the OS

16 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Why Threads?

Extension of process model:
A process may consist of multiple independent control flows
called “threads"
The thread defines a sequential execution stream within a
process (PC, SP, registers)

Threads share the address space of the process:
All threads belonging to the same process see the same value
→ shared-memory architecture

17 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Why Threads? (cont’d)

Thread generation is faster than process generation
No copy of the address space is necessary

Different threads of a process can be assigned run on different
cores of a multicore processor

"We draw attention primarily on multi-threading programming in
the first half of this module.

18 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Process and thread: Illustration

19 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

POSIX Threads

#i n c l u d e <pth read . h>
vo i d ∗ main () {

. . .
i r e t 1 = pth read_crea te (&thread1 , NULL , pr in t_message_funct ion ,

(v o i d ∗) message1) ;
i r e t 2 = pth read_crea te (&thread2 , NULL , pr in t_message_funct ion ,

(v o i d ∗) message2) ;
. . .
p th r ead_jo i n (thread1 , NULL) ;
p th r ead_jo i n (thread2 , NULL) ;
. . .

}

20 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

C++20 Threads

vo i d p r i n t (i n t n , con s t s t d : : s t r i n g &s t r) {
s td : : s t r i n g msg = s td : : t o_s t r i n g (n) + "␣ : ␣" + s t r ;
s t d : : cout << msg << std : : e nd l ;

}
i n t main () {

s td : : v e c to r<s td : : s t r i n g > s = { ‘ ‘ P a r a l l e l " , ␣ ‘ ‘ Computing" } ;
s t d : : v e c to r<s td : : th read> th r e ad s ;
f o r (i n t i = 0 ; i < s . s i z e () ; i++) {

t h r e ad s . push_back (s td : : t h r e ad (p r i n t , i , s [i])) ;
}
f o r (auto &th : t h r e a d s) {

th . j o i n () ;
}
r e t u r n 0 ;

}

"To start a thread in C++ we simply need to create a new thread
object and pass the executing code to be called (i.e, a callable
object) into the constructor of the object.

21 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Java Threads

// c r e a t i n g a Java Thread s u b c l a s s
p u b l i c c l a s s MyClassThread ex t end s Thread {

p u b l i c v o i d run () {
System . out . p r i n t l n ("MyClass ␣ runn i ng ") ;

}
}
//To c r e a t e and s t a r t the above th r ead :
MyClassThread t1 = new MyClassThread () ;
t1 . s t a r t () ;
//To wa i t f o r t h r ead to complete :
t1 . j o i n () ;

Notes
We will mostly use Java thread as an example to cover the first half
of this course. However, the concepts and techniques apply
regardless of specific programming languages.

22 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

How to Stop a Thread

Not recommend:
destroy()
stop() or std::terminate() in C++
stop(Throwable obj)
suspend()

Recommend:
Interrupt()

"

Java 11 Removes stop() and destroy() Methods as they are
“unsafe" or may leave the system in “undetermined" states.

23 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

What is Parallelism?

Parallelism:
Average number of units of work that can be performed in
parallel per unit time
Example: average number of threads (processes) per second

Limits in exploiting parallelism
Program dependencies – data dependencies, control
dependencies
Runtime – memory contention, communication overheads,
thread/process overhead, synchronization (coordination)

Work = tasks + dependencies

24 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Types of Parallelism

1. Data Parallelism
Partition the data used in solving the problem among the
processing units; each processing unit carries out similar operations
on its part of the data

2. Task Parallelism
Partition the tasks in solving the problem among the processing
units

25 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Data Parallelism

Same operation is applied to different elements of a data set
If operations are independent, elements can be distributed
among processors for parallel execution → data parallelism

SIMD computers / instructions are designed to exploit data
parallelism
Example: Loop parallelism

26 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Representative data parallelism: Loop Parallelism

Many algorithms perform computations by iteratively
traversing a large data structure

Commonly expressed as a loop
If the iterations are independent:

Iterations can be executed in arbitrary order and in parallel on
different processors

Remark
OpenMP is a widely used “shortcut” to achieve loop parallelism in
C/C++. We will cover OpenMP later.

27 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Task (Functional) Parallelism

Program parts (tasks) can be executed in parallel
Tasks: single statement, series of statements, loops or function
calls
Further decomposition: A single task can be executed
sequentially by one processor, or in parallel by multiple
processors

28 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Representative Task Parallelism: Pipeline Parallelism

If a program can be divided into multiple pieces without any
dependency among them, we can achieve true task parallelism.
If there are dependency among them, we can achieve pipeline
parallelism.

Remark
Note that, there are different ways to “split" a program, so we can
end up with multiple alternative plans of task parallelism of the
same program → those plans often lead to significantly different
execution efficiency.

29 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Data vs. Task Parallelism

Suppose we have 60 assignment scripts, each with 15 questions to
be distributed to 3 TAs for marking:

30 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Thread vs. Task

Thread is the execution unit. (Think about a student)
Task is the work unit. (Think about an assignment)

31 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Thread and Task can be bundled

c l a s s SummerThread ex t end s Thread {
i n t [] a r r a y ;
i n t l owe r ;
i n t upper ;
i n t sum = 0 ;
p u b l i c SummerThread (i n t [] a r r ay , i n t lower , i n t upper) {

t h i s . a r r a y = a r r a y ;
t h i s . l owe r = lowe r ;
t h i s . upper = upper ;

}
p u b l i c v o i d run () {

f o r (i n t i = lowe r ; i < upper ; i++) {
sum += a r r a y [i] ;

}
}
p u b l i c i n t getSum () {

r e t u r n sum ;
}

}

32 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Thread and Task can be bundled

p u b l i c c l a s s BundledExample {
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) throws Excep t i on {

i n t [] a r r a y = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;
SummerThread s t h r e ad1 = new SummerThread (a r r ay , 0 , a r r a y . l e n g t h

/ 2 + 1) ;
SummerThread s t h r e ad2 = new SummerThread (a r r ay , a r r a y . l e n g t h / 2

+ 1 , a r r a y . l e n g t h) ;
s t h r e ad1 . s t a r t () ;
s t h r e ad2 . s t a r t () ;
t r y {

s t h r e ad1 . j o i n () ;
s t h r e ad2 . j o i n () ;
System . out . p r i n t l n ("The␣sum␣ i s : ␣" + (s t h r e ad1 . getSum () +

s th r e ad2 . getSum ())) ;
} ca tch (I n t e r r u p t e dE x c e p t i o n e) {

System . out . p r i n t l n ("A␣ th r ead ␣ d idn ’ t ␣ f i n i s h ! ") ;
}

}
}

"

Thread is initialized with ‘tasks’ (i.e., summing of a subset of an
array).

33 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Thread and Task can be separated

c l a s s Summer implements Runnable {
i n t [] a r r a y ;
i n t l owe r ;
i n t upper ;
i n t sum = 0 ;
p u b l i c Summer (i n t [] a r r ay , i n t lower , i n t upper) {

t h i s . a r r a y = a r r a y ;
t h i s . l owe r = lowe r ;
t h i s . upper = upper ;

}
p u b l i c v o i d run () {

f o r (i n t i = lowe r ; i < upper ; i++) {
sum += a r r a y [i] ;

}
}
p u b l i c i n t getSum () {

r e t u r n sum ;
}

}

34 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Thread and Task can be separated

p u b l i c c l a s s SeparatedExample {
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) throws Excep t i on {

i n t [] a r r a y = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;
Summer summer1 = new Summer(a r r ay , 0 , a r r a y . l e n g t h / 2 + 1) ;
Summer summer2 = new Summer(a r r ay , a r r a y . l e n g t h / 2 + 1 , a r r a y .

l e n g t h) ;
Thread th r ead1 = new Thread (summer1) ;
Thread th r ead2 = new Thread (summer2) ;
th r ead1 . s t a r t () ;
t h r ead2 . s t a r t () ;
t r y {

th r ead1 . j o i n () ;
t h r ead2 . j o i n () ;
System . out . p r i n t l n ("The␣sum␣ i s : ␣" + (summer1 . getSum () +

summer2 . getSum ())) ;
} ca tch (I n t e r r u p t e dE x c e p t i o n e) {

System . out . p r i n t l n ("A␣ th r ead ␣ d idn ’ t ␣ f i n i s h ! ") ;
}

}
}

35 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Program Parallelization

Parallelization: Transform sequential into parallel computation
Define parallel tasks of the appropriate granularity:

36 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Foster’s Design Methodology

37 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Foster’s Design Methodology (cont’d)

38 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

1. Partitioning

Divide computation and data into independent pieces to
discover maximum parallelism

Different way of thinking about problems – reveals structure in
a problem, and hence opportunities for optimization:
Data Parallelism – Domain Decomposition:

Divide data into pieces of approximately equal size
Determine how to associate computations with the data

39 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Example: Domain Decomposition

40 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

1. Partitioning

Divide computation and data into independent pieces to
discover maximum parallelism

Different way of thinking about problems – reveals structure in
a problem, and hence opportunities for optimization:

Data Parallelism – Domain Decomposition
Functional Parallelism – Functional Decomposition:

Divide computation into pieces
Determine how to associate data with the computations

41 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

1. Partitioning

Divide computation and data into independent pieces to
discover maximum parallelism

Different way of thinking about problems – reveals structure in
a problem, and hence opportunities for optimization:

Data Parallelism – Domain Decomposition
Functional Parallelism – Functional Decomposition:

Divide computation into pieces
Determine how to associate data with the computations

42 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Example: Functional Decomposition

43 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

1. Partitioning: Partitioning Rules of Thumb

At least 10x more primitive tasks than processors in target
computer

Fine-grained primitive tasks → More effective usage of
hardware resources

Minimize redundant computations and redundant data storage
(best to eliminate if any)
Primitive tasks roughly of the same size
Number of tasks as an increasing function of problem size

44 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Task Dependence graph

Can be used to visualize and evaluate the task decomposition
strategy
A directed acyclic graph:

Node: Represent each task, node value is the expected
execution time
Edge: Represent control dependency between task

Properties:
Critical Path Length: Maximum (slowest) completion time
Degree of concurrency = Total Work / Critical Path Length

An indication of amount of work that can be done
concurrently

45 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Task Dependence Graph - Example

Two different TDGs for the same program:

46 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Task Dependence Graph - Example

Two different TDGs for the same program:

47 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

2. Communication (Coordination)

Tasks are intended to execute in parallel
but generally not executing independently
need to determine data passed among tasks

Ideally, distribute and overlap computation and communication

48 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Coordination/Communication Models

No communication
Shared address space
Message passing

49 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Communication Models: No Communication

Historically: same operation on each element of an array
SIMD, vector processors

Basic structure: map a function onto a large collection of data
Functional: side-effect free execution
No communication among distinct function invocations

Allows invocations to be scheduled in parallel

Stream programming model
Modern performance-oriented data-parallel languages do not
strictly enforce this structure

CUDA, OpenCL

50 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

CUDA Execution

51 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Communication Models: Shared Address Space

Communication abstraction
Tasks communicate by reading/writing to shared variables
Ensure mutual exclusion via use of locks
Logical extension of uniprocessor programming

Requires hardware support to implement efficiently
Any processor can load and store from any address
Even with NUMA, costly to scale
Matches shared memory systems – UMA, NUMA, etc.

52 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Shared-Memory Communication

Examples
Typical forms of shared-memory communication include
“broadcast”, “reduction”, etc.

53 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Communication Models: Message Passing

Tasks operate within their own private address spaces
Tasks communicate by explicitly sending/receiving messages

Popular software library: MPI (Mostly for C++), RMI &
Sockets (Mostly for Java)
Hardware does not implement system-wide loads and stores

Can connect commodity systems together to form large
parallel machine

Matches distributed memory systems
Programming model for clusters, supercomputers, etc

54 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Correspondence with Hardware Implementations

Common to implement message passing abstractions on
machines that implement a shared address space in hardware

“Sending message” = copying memory from message library
buffers
“Receiving message” = copy data from message library buffers

Possible to implement shared address space abstraction on
machines that do not support it in HW

Less efficient software solutions
Mark all pages with shared variables as invalid
Page-fault handler issues appropriate network requests

55 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Summary of Coordination Models

No communication:
Programs perform same function on different data elements in
a collection

Shared address space:
All threads can read and write to all shared variables
Drawback: not all reads and writes have the same cost (and
that cost is not apparent in program text), and may lead to
implicit conflict (dangerous!)

Message passing:
All communication occurs in the form of explicit messages

56 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

3. Agglomeration/Scheduling

Combine tasks into larger tasks
Still, make sure Number of tasks ≥ number of cores

Goals:
Improve performance (cost of task creation + communication)
Maintain scalability of program
Simplify programming

57 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Motivation of Agglomeration

Eliminate communication between primitive tasks
agglomerated into consolidated task
For example, combine groups of sending and receiving tasks

58 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Examples of Agglomeration

59 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Agglomeration Rules of Thumb

Locality of parallel algorithm has increased
Number of tasks increases with problem size
Number of tasks suitable for likely target systems
Tradeoff between agglomeration and code modifications costs
is reasonable

60 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

4. Mapping

Assignment of tasks to execution units
Conflicting goals:

Maximize processor utilization – place tasks on different
processors to increase parallelism
Minimize inter-processor communication – place tasks that
communicate frequently on the same processor to increase
locality

Mapping may be performed by:
OS for centralized multiprocessor
User for distributed memory systems

61 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Mapping Example

Figure: 12 x 6 Grid Problem

Remark
Same amount of work on each processor and to minimize
off-processor communications

62 / 63

Motivation Processes vs Threads Parallelism Types Parallelization Methodology

Mapping Example (Cont’d)

Figure: Mapping a Task Dependency Graph to Three Processors

63 / 63

	Motivation
	Processes vs Threads
	Parallelism Types
	Parallelization Methodology

